
The growing tree distribution on Boolean functions.∗

Brigitte Chauvin† Danièle Gardy‡ Cécile Mailler§

Abstract

We define a probability distribution over the set of Boolean

functions of k variables induced by the tree representation

of Boolean expressions. The law we are interested in is

inspired by the growth model of Binary Search Trees: we

call it the growing tree law. We study it over different logical

systems and compare the results we obtain to already known

distributions induced by the tree representation: Catalan

trees, Galton-Watson trees and balanced trees.

1 Introduction

A Boolean function of k variables is a function f :
{0, 1}k −→ {0, 1} where 0 and 1 may be interpreted
as the truth values False and True. Our aim is to
build a probability distribution over the set of Boolean
functions and to study it.

The uniform distribution over the set of Boolean
functions of k variables - denoted by Fk - has been stud-
ied by Shannon [Sha49]. If we define the complexity of
a Boolean function as the minimal number of connec-
tives needed to represent this function by a Boolean ex-
pression, then a Boolean function chosen uniformly at
random has, asymptotically when k tends to infinity, an
exponential complexity. As the maximal complexity is
also of exponential order, roughly speaking, an average
Boolean function is asymptotically of maximal complex-
ity. This phenomenon is called the Shannon effect.

Lefmann and Savický [LS97] and later Chauvin et
al. [CFGG04] studied random distributions induced
by tree representation of Boolean functions. Indeed,
complete binary trees - i.e. trees whose internal nodes
have either zero or two sons - with nodes labelled
with connectives - for example ∧ and ∨ - and with
leaves labelled with literals x1, x̄1, . . . , xk, x̄k, represent
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Boolean functions, and a random distribution over the
set of such trees induces a random distribution over
Fk. Both articles define the Catalan trees distribution.
let the size of a binary tree be the number of its
internal nodes1, Un,k the uniform distribution over
labelled binary trees of size n over k variables, and
µn,k the distribution induced by Un,k on Fk. The limit
distribution µk of µn,k when n tends to infinity exists
and is called the Catalan trees distribution.

Chauvin et al. study another distribution over bi-
nary trees induced by a critical Galton-Watson pro-
cess, which are randomly labelled afterwards. It gives
a distribution over Fk denoted by πk. It has been
shown [CFGG04, GG10] that every Boolean function is
weighted, but Boolean functions with lower complexity
are more weighted by both µk and πk.

In the present paper we now consider another
distribution induced by the tree representation: the
growing tree distribution, inspired by the Binary Search
Tree growing process. We then label the binary tree
according to two different models: the ∧/∨ model -
studied in [LS97, CFGG04] - and the implication model
- used to compare intuitional and classical logics in
[FGGZ07, KZ04].

In section 2, we define precisely the growing tree
model and the two labelling models, before stating
our main results in the following section: Theorems
1 and 2 (proved in section 4) give the convergence of
the growing tree distribution to a distribution which
support is included into the set of constant functions
in both labelling models, and Theorem 3 (proved in
section 6) deals with the proportion of simple tautologies
among tautologies. Finally, some extensions of the two
labelling models are presented respectively in sections 5
and 6.

2 Growing tree

First, let us define a new distribution over unlabelled
trees of size n - the growing tree distribution - via a
random process stopped at step n.

Definition 1. The growing process (Ti)i∈N is defined
by:

1Let us note that a binary tree with n internal nodes has n+1
leaves.



• T0 is reduced to its root.

• Given Ti, we choose uniformly at random a leaf of
the tree and make it grow by giving it two sons. The
new tree is Ti+1.

The random variable Tn is called the growing tree
of size n. To define a distribution over the set Ek of
random Boolean expressions over k variables, we have to
choose a rule to label randomly the nodes. We choose to
study two rules: the ∧/∨ model, which is complete - i.e.
each Boolean function can be expressed in this logical
system, and the implication model, which is simpler
but not complete, and nevertheless useful to compare
intuitional and classical logics [FGGZ07, KZ04].

Definition 2. The ∧/∨model. Given a growing tree
of size n, we label it according to the following rules:

• Each internal node is labelled by ∧ or ∨ with
probability 1

2 and 1
2 .

• Each leaf is labelled by a literal chosen uniformly
at random in the set {x1, x̄1, . . . , xk, x̄k}.

• All the labellings are independent from each other.

The implication model. Given a growing tree of size
n, we label it according to the following rules:

• Each internal node is labelled by →.

• Each leaf is labelled independently from the others
by a literal chosen uniformly at random in the set
{x1, . . . , xk}.

Each model defines a distribution, respectively P∧∨n,k
and P→n,k - denoted by Pn,k when there is no possible
confusion - over Ek, the set of Boolean expressions over
k variables. Let us define a surjective mapping Φ from
Ek to Fk as follows2:

Φ(γ) = f if and only if γ represents (or computes) f.

The image of Pn,k by Φ over Fk is a distribu-
tion over Fk denoted by pn,k: ∀f ∈ Fk, pn,k(f) =Pn,k ({γ ∈ Ek such that Φ(γ) = f}).

Our aim is now to study the behaviour of pn,k when
the size n of the random tree tends to infinity: does it
tend to a limit distribution pk? What are the properties
of this distribution pk if it exists? Is there any Shannon
effect on pk when k tends to infinity?

2Of course, this is not a one-to-one mapping since a same
function can be represented by different expressions. For example,
Φ(x1 ∧ x̄1) = Φ(x2 ∧ x̄2) = False.

3 Main results

Surprisingly, the growing tree model is a very simple
model. Indeed, in both labelling models, the asymptotic
distribution pk exists and its support is included into the
set of the constant functions. Moreover, the speed of the
convergence is of order O

(
1

lnn

)
. We prove the following

theorems:

Theorem 1. (Growing tree - ∧/∨ model) In the
case of the ∧/∨ labelling model, we have, when n tends
to infinty: pn,k −→ pk = 1

2δTrue + 1
2δFalse. Moreover,

‖pn,k − pk‖∞ = O
(

1
lnn

)
when n tends to inifnity.

Theorem 1 can be extended to a more general labelling
model, as shown in section 5.

Theorem 2. (Growing tree - implication model)
In the case of the implication labelling model, we have,
when n −→ +∞: pn,k −→ pk = δTrue. Moreover,
‖pn,k − pk‖∞ = O

(
1

lnn

)
when n −→ +∞.

To sum up, the asymptotic distribution pk does not
depend on k and there is obviously no Shannon effect, as
the average complexity of a function chosen at random
according to pk is the complexity of a constant: 1.

Remark 1. The difference between the two theorems comes
from the fact that the function False cannot be represented
by an expression built with the single connective → and with
the positive literals {x1, . . . , xk}. A function can be expressed
in this model if and only if there exists i ∈ J1, kK and g ∈ Fk
such as f = xi ∨ g.

In the Catalan trees and Galton-Watson models, an
important part of the study in the implication labelling
model was to consider simple tautologies, which are
"simple" Boolean expressions that compute True:

Definition 3. ([FGGZ07]) In the implication la-
belling model, every Boolean expression can be writ-
ten as: A1 → (A2 → . . . (Ap → α)). The subtrees
A1, . . . , Ap are called the premises of the Boolean ex-
pression and α is called the goal. A simple tautology is
a Boolean expression which has a premise reduced to a
simple leaf, labelled by α.

Let STk be the set of simple tautologies over k
variables.

It has been shown [FGGZ07] that either in the Catalan
trees or in the Galton-Watson model, roughly speaking,
every tautology is a simple tautology, asymptotically
when k tends to infinity. The following theorem states
that in the growing tree model, we get a different
behaviour:

Theorem 3. We have: Pn,k(STk) n→+∞
−−−−−→ 1 − e

−1/k ∼
1
k when k → +∞.



Since Pn,k({tautologies}) = pn,k(True)
n→+∞
−−−−−→ 1,

simple tautologies are not the only ones charged by
the growing tree law, asymptotically when k tends to
infinity.

4 Proofs of Theorems 1 and 2

We present two different proofs for Theorems 1 and 2:
one using an analytic combinatorics approach, and a
probabilistic approach via Yule trees. The first one
is the one already used to study the Catalan trees or
the Galton-Watson model: it is a general approach but
it does not give the convergence speed easily. The
probabilistic approach is more powerful: it is shorter
and gives the speed of the convergence quite easily,
but it is specific to the growing tree model. In both
approaches, the proofs of Theorems 1 and 2 are almost
the same. Therefore, we only present the proof of
Theorem 1, which is the most intricate one, since there
are two connectives instead of one.

4.1 The analytic combinatorics approach. The
idea of this proof is to use generating functions and
analytic combinatorics methods, as presented, e.g., by
Flajolet and Sedgewick [FS09]. Briefly, we consider a
sequence (for example (pn,k(f))n≥0) as the sequence of
the coefficients of a power series. Thus, the asymptotic
behaviour of the power series near its dominant singular-
ity can give some clues about the asymptotic behaviour
of the initial sequence.

Thus, given a Boolean function f , let us introduce
its generating function, defined as:

φf (z) =

+∞∑

n=0

pn,k(f)z
n

where pn(f) is the probability that the random growing
tree Tn of size n computes f . Now, Tn computes f if
and only if

• n = 0, f = α is a literal, and the root of T0 (which
is also its single node) is labelled by α; or

• n 6= 0, the left subtree of Tn computes g, the right
subtree of Tn computes h, the root of Tn is labelled
by ⋄ ∈ {∧,∨} and f = g ⋄ h.

Moreover the subtrees of Tn are also growing trees, and
the probability that the left subtree has size i is 1

n .
Indeed, we can show it by induction: if n = 2, then the
left subtree has size 1 with probability 1. Now, let us
assume that the size of the left subtree of Tn - denoted
by Ln - follows the uniform law over {1, . . . , n − 1}.

Thus,P(|Ln+1| = i) =
i− 1

n
P(|Ln| = i− 1)

+

(

1−
i

n

)P(|Ln| = i)

=
i− 1

n
·

1

n− 1
+
n− i

n
·

1

n− 1
=

1

n
.

Thus, the size of the left subtree Ln+1 of Tn+1 follows
the uniform law over {1, . . . , n}. Therefore, by condi-
tioning on the size of the left subtree, we obtain the
following formula:
(4.1)

pn+1,k(f) =
1

2

∑

g∧h=f

n∑

i=0

1

n+ 1
pi,k(g)pn−i,k(h)

+
1

2

∑

g∨h=f

n∑

i=0

1

n+ 1
pi,k(g)pn−i,k(h).

By multiplying (4.1) by zn+1 and summing for n ≥ 0, we

get a relationship between the 22k different generating
functions:

(4.2)

2φf (z)− 2p0,k(f) =

∫
∑

g∧h=f

φg(z)φh(z)dz

+

∫
∑

g∨h=f

φg(z)φh(z)dz.

Deriving formula (4.2), we finally obtain the

Lemma 1. ∀f ∈ Fk, we have:

2φ′f (z) =
∑

g∧h=f

φg(z)φh(z) +
∑

g∨h=f

φg(z)φh(z).

Lemma 1 gives a differential system satisfied by the

22k generating functions for the 22k Boolean functions
of Fk. Studies of the Catalan trees and of the Galton-
Watson model by this method both lead to very similar
systems, except that they are both algebraic systems (cf.
[CFGG04]). In those cases, the Drmota-Lalley-Woods
theorem allowed to conclude easily since it applies for
algebraic systems ([Drm97, Lal93, Woo97]). In our
case, this theorem cannot apply due to the differential
operator. Luckily, we can still obtain a solution of the
system from Lemma 1.

First we observe obvious symmetries that simplify
the system. Indeed, in the growing tree model, the two
connectives ∧ and ∨ have the same probability. E.g., the
functions x1 ∧x2 and x1 ∨x2 have the same probability
to be computed by a growing tree: they thus have the
same generating function. Moreover, all the literals have
the same probability to appear as labels of each leaf: for



example, x1 ∧ x2 and x1 ∧ x3 have the same probability
to be computed by a growing tree.

We can thus define equivalency classes of Boolean
functions through the following operations :

• permutation of variables,

• negation of a variable,

• negation of the function.

One class is {False, T rue}: let us denote by φV the
generating function of both False and True, and by
φ1, . . . , φq the generating functions of the q other equiv-
alency classes - a detailed study of these classes can be
found in an article by Harrison [Har63]. As an example,
there are 16 Boolean functions over 2 variables, and we
define 4 equivalency classes that are:

True x x ∧ y x xor y
False x̄ x ∧ ȳ x xor ȳ

y x̄ ∧ y
ȳ x̄ ∧ ȳ

x ∨ y
x ∨ ȳ
x̄ ∨ y
x̄ ∨ ȳ

If we consider k = 3, there are 256 Boolean functions
and 14 equivalency classes; and for k = 4, there
are 65 536 Boolean functions and 222 equivalency
classes. Therefore, the simplification is is significant for
numerical computation, even if the equivalence f ∼ f̄ is
enough for the following theoretical proof.

By replacing in the system obtained from Lemma
1 each generating function by the generating function
of its equivalency class, we can reduce it to a system of
q + 1 differential equations:

(4.3)







φ′V = PV (φV , φ1, . . . , φq);
φ′1 = P1(φV , φ1, . . . , φq);

...
φ′q = Pq(φV , φ1, . . . , φq).

Then we introduce σi = φi ◦ φ
−1
V for all i ∈ J1, qK:

indeed, φV is strictly increasing on the real line and
thus invertible on its neighborhood. We have:

(4.4)







σ′1(u) =
P1(u, σ1(u), . . . , σq(u))

PV (u, σ1(u), . . . , σq(u))
;

...

σ′q(u) =
Pq(u, σ1(u), . . . , σq(u))

PV (u, σ1(u), . . . , σq(u))
.

where P1, . . . , Pq and PV are homogeneous polynomials
of degree 2.

To study the solutions of system (4.4), we
note that the u2 monomial only appears in
PV (u, σ1(u), . . . , σq(u)): if both subtrees compute
a constant (True or False) then, the whole tree
computes a constant. The following lemma can be
applied to the system (4.4).

Lemma 2. If Y : R −→ Rn satisfies the differential
equation

Y ′ = f(x, Y ) with lim
‖Z‖∞−→∞

lim
x−→∞

f(x, Z) = 0

and if f = (f1, . . . , fn) with f1, . . . , fn > 0, then each
coordinate of Y (x) is of order o(x).

Proof. This lemma results from standard arguments:
we detail a proof in appendix for completeness sake.

Thanks to Lemma 2, we conclude that for all i ∈
J1, qK, we have:

(4.5) σi(u) = o(u) as u −→ +∞.

Let us remind that system (4.3) gives φ′V =
PV (φV , φ1, . . . , φq) with φi = σi ◦ φV . Thus, φ′V =
G(φV ), where G(w) = PV (w, σ1(w), . . . , σq(w)). There-
fore, φV satisfies the hypothesis of

Lemma 3. If y satisfies the differential equation y′ =
G(y) where G is non negative and G(x) ∼ cx2 when x
tends to infinity, then there exists x0 such that

y(x) ∼
1

c (x0 − x)
when x −→ x0.

Proof. See Appendix.

Thanks to Lemma 3, we conclude that there exists
a constant c and a real number u0 such that, for real
values of u:

φV (u) ∼
1

c (u0 − u)
when u −→ u0.

Fact 1. Let us remark that, since all coefficients of φV are
less than 1, u0 ≥ 1.

Moreover, thanks to (4.5), we have, for real values
of u:

φi(u)
u−→u0= o

(
c

(u− u0)

)

.

These asymptotic behaviours only hold on the real
line. Consequently, we cannot use the classical transfer
lemma of Flajolet and Odlyzko [FO90] (detailed in
[FS09, page 389]), but, thanks to a standard tauberian



theorem (see for example [Har49, page 155]), we obtain
that:
(4.6)






n∑

i=1

pi,k(True)u
i
0 =

n∑

i=1

pi,k(False)u
i
0 ∼ cn

n∑

i=1

pi,k(f)u
i
0 = o(n) for all f /∈ {True, False}.

when n −→∞. Therefore,

∑

f∈Fk

n∑

i=1

pi,k(f)u
i
0 =

n∑

i=1




∑

f∈Fk

pi,k(f)



 ui0 =

n∑

i=1

ui0

=







u0
un+1

0 − 1

u0 − 1
if u0 > 1

n if u0 = 1

in addition, thanks to (4.6), we have that, when n tends
to infinity:

∑

f∈Fk

n∑

i=1

pi,k(f)u
i
0

∼

n∑

i=1

pi,k(True)u
i
0 +

n∑

i=1

pi,k(False)u
i
0

∼ 2cn.

We can thus conclude that u0 = 1 and c = 1
2 and

(4.7)

n∑

i=1

pi,k(True) ∼
n

2
when n −→∞.

To conclude, let us remind that, thanks to (4.1),

pn+1,k(True) =
1

2

∑

g∧h=True

n∑

i=0

1

n+ 1
pi,k(g)pn−i,k(h)

+
1

2

∑

g∨h=True

n∑

i=0

1

n+ 1
pi,k(g)pn−i,k(h)

≥
1

2(n+ 1)

n∑

i=1

pi,k(True)pn−i,k(True)

+
1

n+ 1

n∑

i=1

pi,k(True)(1− pn−i,k(True)

+
1

2(n+ 1)

n∑

i=1

pi,k(True)pn−i,k(True)

where the first term of the sum stands for the probability
to compute True knowing that the root is labelled by ∧
and the other terms are less than the same probability
knowing that the root is labelled by ∨. We finally obtain
that:

pn+1,k(True) ≥
1

n+ 1

n∑

i=1

pn,i(True)
n→∞
−−−−→

1

2

thanks to (4.7). Thus we have proved pn,k(True) −→
1
2

when n tends to infinity, which is the first assertion of
Theorem 1. The convergence speed would follow from
a second-order evaluation of the differential system;
however it can be more simply obtained from the
probabilistic approach presented below.

4.2 The probabilistic approach. The idea of this
proof - due to Pittel [Pit84] - is to embed the discrete
process of the growing tree into continuous time by using
exponential clocks.

Instead of growing step by step at times
(1, 2, . . . , n, . . .), the tree grows at random continuous
times: each leaf grows independantly from the others
after an exponentially distributed time. We thus define
a continuous process of trees - denoted by (Yt)t≥0 and
named the Yule tree (c.f. Definition 4). The link with
the (discrete) growing tree is the following: if we con-
sider the sequence of the different values taken by the
continuous process (it is a sequence of trees), then this
sequence is a growing tree. This property is due to the
use of independant and exponentially distributied time
of growth. Thus, studying the continuous time process
will give information about the (discrete) growing tree.

Moreover, the Yule tree has a property which was
wrong in discrete time and which plainly justifies the
continuous time embedding : it gives independance
between the right and left subtrees at each node of the
tree. It is the key of the following proof.

Definition 4. A Yule tree is a continuous time process
of binary trees (Yt)t≥0 growing according to the follow-
ing rules:

• Y0 is a single root;

• each leaf of Yt gives birth to two sons at the end
of a random time following an exponential law of
parameter 1, independently from the other leaves.

Definition 5. A labelled Yule tree is a continuous
time process (Zt)t≥0 of labelled binary trees, which
evolves according to the following rules:

• the underlying binary tree is a Yule tree;

• each new leaf is labelled by a literal chosen uni-
formly at random into {x1, x̄1, . . . , xk, x̄k} ;

• each new internal node is labelled by ∧ or ∨ uni-
formly at random;

• each labelling is independent from the others.

Let us denote by Pt the image by Φ3 of the law of Zt.

3let us remind that Phi is the surjective mapping from Ek to Fk
such that Φ(γ) = f if and only if γ represents (or computes) f



Fact 2. For all t ≥ 0, let us denote by n(t) the number of
internal nodes of Zt. Then, Zt has the same law as Tn(t): it
is a growing tree of size n(t).

To prove Theorem 1, the idea - inspired from an
article about balanced binary trees [FGG09] - is to
consider the probability that two different assignments
have distinct images by the random Boolean function,
and to prove that it tends to 0 as t tends to infinity.
Therefore, only constant functions - i.e. True and False
- will be charged by the asymptotic distribution.

Let a = (a1, . . . , ak) and b = (b1, . . . , bk) be two
distinct elements of {0, 1}k, which means two different
assignments of the k variables. Let α and β be two
elements of {0, 1}. For all t ≥ 0, we denote P

αβ
t (a, b) =

Pt (f(a) = α and f(b) = β).

Fact 3. Thanks to the symmetries between ∧ and ∨ and the
variables and their negations, we get P

01
t (a, b) = P

10
t (a, b) and

P
00
t (a, b) = P

11
t (a, b). Indeed, the probability to compute f or

its negation f̄ are the same since ∧ and ∨ occur with the
same probabilty at each internal node and a variable and its
negation occur with the same probability at each leaf.

Conditionning on the time when the root’s clock
(which has an exponential law of parameter 1) rings,
we get:

P
10
t =

k∑

i=1

e
−t

2k

(1{ai=1 and bi=0} + 1{ai=0 and bi=1}

)

+
1

2

∫ t

0

(
P

11
t−sP

10
t−s + P

10
t−s(P

11
t−s + P

01
t−s)

+P
01
t−s(P

00
t−s + P

10
t−s) + P

00
t−sP

10
t−s

)
e
−sds

where the fisrt term of the sum stand for the probability
that f(a) = 1 and f(b) = 0 knowing that the Yule tree
is still reduced to its root at time t, and the second
term is the probability of the same event, knowing that
the root has given birth to two sons before time t. In
the second term, we look at the different possibilities to
get f(a) = 1 and f(b) = 0, depending on the value of
the root’s label (∧ or ∨ with probability 1

2 ) and on the
values of the two subtrees for the affectations a and b.
Simplifying, we get:

P
10
t =

e
−t

2k
ca,b + e

−t

∫ t

0

(
P

10
s − (P10

s )2
)

e
sds

where ca,b =
∑k
i=1

(1{ai=1 and bi=0} + 1{ai=0 and bi=1}

)

is a constant depending only on a and b. Let πa,b(t) =
P

10
t (a, b). We have:

(4.8) e
tπa,b(t) =

ca,b
2k

+

∫ t

0

(
πa,b(s)− πa,b(s)

2
)

e
sds.

Therefore, we have the following result on πa,b(t):

Proposition 1. • If a 6= b then πa,b(t) = 1
t+t0

where

t0 = 2k
ca,b

.

• If a = b, then πa,a(t) is the constant function equal
to zero.
Thus, πa,b(t) = P

10
t (a, b) −→ 0 for all a, b in

{0, 1}k.

Proof. We can easily show that πa,b is differentiable,
and thus, thanks to (4.8), we get π′a,b + π2

a,b = 0. Let
us remark that if a 6= b then there exist i ∈ J1, kK such
that ai 6= bi, i.e. ai = 1 and bi = 0 or ai = 0 and bi = 1.
Therefore, ca,b ≥ 1{ai=1 and bi=0} + 1{ai=0 and bi=1} = 1

and thus πa,b(0) =
ca,b
2k > 0, thus πa,b(t) = 1

t+t0
where

t0 = 2k
ca,b

.

If a = b, πa,a(0) = 0 and we get that πa,a(t) = 0
for all t: a single element a cannot have two different
images by a function f .

To conclude about the convergence of Pt when t
tends to infinity, we only have to note that:

Pt(Fk \ {True,False}) ≤
∑

(a,b),a 6=b

Pt(f(a) = 1 et f(b) = 0)

≤ 2k(2k − 1) sup
(a,b)

P
10
t (a, b)

≤
2k(2k − 1)

t

Then, for all function f /∈ {True, False}, we have:
limt→+∞ Pt(f) = 0. Moreover, Pt({True, False}) ≥(

1− 2k(2k−1)
t

)

, which leads to limt→+∞ Pt(True) +

Pt(False) ≥ 1, i.e. limt→+∞ Pt(True) =
limt→+∞ Pt(False) = 1

2 . Thus, Pt tends to a limit
distribution pk = 1

2δTrue + 1
2δFalse with a convergence

speed of order 1
t :

(4.9) ‖Pt − pk‖∞ ≤
2k(2k − 1)

t
.

Fact 4. If Tn is the random variable defined by Tn =
inf{t ≥ 0 such that n(t) = n} then |Tn − lnn| tends to zero
almost surely as n tend to infinity.

We are now able to prove the following Proposition;
which, giving the convergence speed, ends the proof of
Theorem 1:

Proposition 2. For large enough n: ‖pn,k − pk‖∞ ≤
2k(2k−1)

lnn−ǫ = O
(

1
lnn

)
, where ǫ is a non-negative constant.

Proof. We have pn,k = PTn almost surely. Since for all



t ∈ R+, 1 =
∑

n≥1 1{Tn≤t<Tn+1}, we get:

‖Pt − pk‖∞ =
∑

n≥1

‖Pt − pk‖∞1{Tn≤t<Tn+1}

=
∑

n≥1

‖PTn − pk‖∞1{Tn≤t<Tn+1}

=
∑

n≥1

‖pn,k − pk‖∞1{Tn≤t<Tn+1}.

We can thus deduce from (4.9) that:

∑

n≥1

‖pn,k − pk‖∞1{Tn≤t<Tn+1} ≤
2k(2k − 1)

t
,

which implies ∀n ≥ 1, ‖pn,k − pk‖∞1{Tn≤t<Tn+1} ≤
2k(2k−1)
t . Given ǫ > 0, there exists n0 ∈ N such that

∀n ≥ n0, |Tn − lnn| ≤ ǫ. Therefore, for all n ≥ n0,

‖pn,k − pk‖∞1{Tn−lnn≤t−lnn≤Tn+1−lnn} ≤
2k(2k − 1)

t
.

Moreover, there exists n1 ∈ N such that ∀n ≥ n1,
| ln
(
n+1
n

)
| ≤ ǫ, which gives, for all n ≥ n2 =

max(n0, n1),

‖pn,k − pk‖∞1{−ǫ≤t−lnn≤2ǫ} ≤
2k(2k − 1)

t
.

thus, for all n ≥ n2, for all t ∈ R+, we have:

‖pn,k − pk‖∞1{−ǫ≤t−lnn≤2ǫ} ≤
2k(2k − 1)

t
1{−ǫ≤t−lnn≤2ǫ}

≤
2k(2k − 1)

lnn− ǫ

Let us fix t = lnn, then, for all n ≥ n2, we obtain

‖pn,k − pk‖∞ ≤
2k(2k−1)

lnn−ǫ .

5 Extensions of Theorem 1

In this section, we consider the extension of our results
to more general models. In the first model, we to bias
the law over the literals in both labelling models (c.f.
Definition 2); in the second, we bias the law over the
connectives in the ∧/∨ model, and in the third we study
the ∧/∨ model with only positive literals. These last
two labelling models have been studied by Fournier et
al. [FGG09] in the case of balanced binary trees (binary
trees whose leaves are all at the same level). The results
we obtain here are very similar to those obtained in the
case of balanced trees.

Biasing the law over the literals. We label each
node by ∧ or ∨ with probability 1

2 independently from
each other. But we now label each leaf according to

a law ν such that ∀i ∈ J1, kK, ν(xi) = ν(x̄i) > 0,
independently from each other. In this case, since the
symmetry between the variables and their negations still
holds, the behaviour of the induced probability law pn
over Fk is the same as in the uniform case - when ν is
the uniform law over {x1, x̄1, . . . , xk, x̄k} - studied just
before.

Indeed, in both proofs developped beforehand, the
modifications appear only in constants - p0,k(f) in (4.2)
and ca,b in (4.8) - which disappear when we take the
derivative of the equations. Therefore, the result is the
same as for the uniform case.

Biaising the law over connectives in the ∧/∨
model. We define the biased model as follows:

• each internal node is labelled according to the law
qδ∧ + (1 − q)δ∨ with q ∈ [0, 1] independently from
the other nodes,

• each leaf is labelled according to a law ν over
{x1, x̄1, . . . , xk, x̄k} such that ∀i ∈ J1, kK, ν(xi) =
ν(x̄i) > 0, independently from the others.

This process defines a new induced distribution pn,k over
Fk whose behaviour is determined in the following:

Theorem 4. In the biased model, if P(∧) = q, then:

• If q > 1
2 , then pn,k −→ δFalse.

• If q < 1
2 , then pn,k −→ δTrue.

Moreover, the convergence speed is of order O
(

1
n|2q−1|

)

in both cases.

Remark 2. It is interesting to note that in the balanced case
q = 1

2
(c.f. Theorem 1), the convergence speed is of order

1
lnn

while it is of order 1

n|2q−1| in Theorem 4.

Proof. We can again develop two different proofs that
are very close to the proofs of Theorem 1 : we develop
hereafter the probabilistic one.

The cases q > 1
2 and q < 1

2 are symmetric and
can be treated in the same way. In the proof, we
only consider the q > 1

2 case. As in the uniform ∧/∨
model, we can choose between two proofs: the analytic
combinatorics one and the probabilistic one. We present
the approach via Yule trees since it gives easily the
convergence speed.

As before, we consider a labelled Yule tree (Et)t≥0

which induces a law Pt over Fk for all t ≥ 0. Let
a = (a1, . . . , ak) ∈ {0, 1}

k be an assignment of the k
variables. We prove again that the probability that the
image of a by a random Boolean function of law Pt is
1, tends to 0 when t tend to infinity. Therefore, let us
study πa(t) := Pt(f(a) = 1).



Conditionning by the time when the root’s clock
rings, with a law Exp(1), we get:

πa(t) = e
−t

k∑

i=1

(ν(ai)1ai=1 + ν(āi)1ai=0)

+

∫ t

0

[
q πa(t− s)

2

+(1− q)(2πa(t− s)− πa(t− s)
2)
]

e
−sds,

e
tπa(t) =

1

2
+

∫ t

0

(
(2q − 1)πa(s)

2 + 2(1− q)πa(s)
)
esds.

Deriving and taking into account p 6= 1
2 , we get:

πa + π′a = (2q − 1)π2
a + 2(1 − q)πa, from which we

deduce π′a = (2q− 1)(π2
a − πa), and finally that πa(t) =

1− 1
e

(2q−1)t+1
since πa(0) = 1

2 . Thus,

Pt(Fk \ {False}) ≤
∑

a

πa(t) ≤ 2k
(

1−
1

e(2p−1)t + 1

)

Thus, since q > 1
2 , limt→+∞ Pt(Fk \ {False}) = 0 and

we have:

‖pn,k − δFalse‖∞ ≤ 2k
(

1−
1

e(2q−1)Tn + 1

)

= O
(

1

n2p−1

)

,

thanks to similar aguments as in the proof od Proposi-
tion 2.

The ∧/∨ model with positive literals. A last
labelling model for growing trees - the positive model
- is as follows:

• each internal node is labelled according to the law
qδ∧ + (1 − q)δ∨ with q ∈ [0, 1] independently from
the other nodes,

• each leaf is labelled according to a law µ over
{x1, . . . , xk} independently from the others.

This process defines a new induced law - still denoted
pn,k - over Fk whose behaviour is determined in the
following Theorem:

Theorem 5. In the positive model, we have:

• If q > 1
2 , then pn,k −→ δx1∧...∧xk.

• If q < 1
2 , then pn,k −→ δx1∨...∨xk.

And the convergence speed is in both cases of order
O
(

1
n|2p−1|

)
.

Proof. As in the biased model, the proofs for q > 1
2

and q < 1
2 are very similar. We assume q > 1

2 in the
proof. Here again, we only developped the probabilistic

approach. By the same computation as in the proof of
Theorem 4, we get:

πa(t) = Pt(f(a) = 1) = 1 +
1

λe(2q−1)t − 1
for all t ≥ 0

or πa = 1. If a = (1, . . . , 1) then πa(0) =
∑k
i=1 1ai=1 =

1 and πa(t) = 1. Thus Pt(f(1, . . . , 1) = 1) = 1.
Otherwise, if a 6= (1, . . . , 1), then since q > 1

2 , we have
limt→∞ Pt(f(a) = 1) = 0. Thus, the asymptotic law of
the pn,k exists and only charges the function x1∧. . .∧xk.

Actually, Theorem 5 is not complete since we have
not studied the case q = 1

2 which is a natural extension
of the ∧/∨ model. Surprisingly, this last case is the
most complicated of the whole study. To state our
last theorem, we have to present the definition of a
threshold function - first introduced in [Ser04] and used
in [FGG09]. We show that the asymptotic distribution
of the pn,k exists and that its support is included in a
finite set of threshold functions.

Definition 6. ([FGG09]) Let a = (a1, . . . , ak) ∈
{0, 1}k. The weight of a relatively to the distribution
ν is the real number ων(a) = ν(x1)a1 + . . .+ ν(xk)ak.

Definition 7. ([FGG09]) A Boolean function f is a
threshold function if there exists a real number θ ≥ 0
such that ∀(a1, . . . , ak) ∈ {0, 1}

k, f(a1, . . . , ak) = 1 ⇔
ων(a) ≥ θ. We denote by Tν,θ the threshold function
associated to the constant θ and to the distribution ν.

Theorem 6. Let us number the different ele-
ments of {0, 1}k in order of increasing weight ων :

ων(a
(1)) ≤ ων(a

(2)) ≤ . . . ≤ ων(a
(2k)). Then,

pn,k
n→+∞
−→

∑2k

j=1

(
ων(a

(j))− ων(a
(j−1))

)
δT
ν,ων(a(j) )

where ων(a
(0)) := 0.

Said differently, pn,k tends to an asymptotic distribution
law pk that satisfies: pk(Tν,ων(a(j))) = ων(a

(j)) −

ων(a
(j−1)) and, if f is a Boolean function different from

Tν,ων(a(j)) for all j ∈ J1, 2kK, then pk(f) = 0.

Proof. The proof is once again based on Yule trees: we
did not handle a proof based on analytic combinatorics.
The probabilistic approach is natural in this case, since
it is an extension of the proof developped in [FGG09]
in the case of balanced trees. Let Et be a Yule tree,
a = (a1, . . . , ak) and b = (b1, . . . , bk) in {0, 1}k be two
assignments of the k variables, and α, β in {0, 1}. For
all t ≥ 0, let παβ(t) = Pt(f(a) = α and f(b) = β). Let
us compute π10 by conditioning on the time when the



root’s clock rings.

π10(t) = e
−t

k∑

i=1

ai(1− bi)ν(xi)

+

∫ t

0

1

2







π11(t− s)π10(t− s)
+π10(t− s)(π10(t− s) + π11(t− s))
+π10(t− s)(π10(t− s) + π00(t− s))

+π10(t− s)π00(t− s)







e
−sds

This gives

π10(t)et =
∑k
i=1 ai(1− bi)ων(xi)

+

∫ t

0

(
π10(s)2 + π10(s)π11(s) + π10(s)π00(s)

)
e
sds.

By differentiating and using the obvious relation π11 +
π10 + π01 + π00 = 1, we get: π′10 = −π10π01. Doing the
same computation for π00, π01 and π11, we obtain the
differential system:

(5.10)







π′10 = −π10π01;
π′01 = −π10π01;
π′11 = π10π01;
π′00 = π10π01.

Thanks to (5.10), we can see that π10(t) and π01(t) are
decreasing functions of t; since they are both positive,
they have a limit as t −→ +∞. In the same way, π11 and
π00 are increasing and thus convergent. Let us denote
lαβ = limt→∞ παβ(t).

Since παβ is monotone and convergent for t tends
to +∞, its derivative tends to zero as t −→ +∞. thus,
taking the limit in system (5.10), we get:

(5.11) l10l01 = 0.

Moreover, π10 − π01 is a constant; then,

(5.12) l10 − l01 = π10(0)− π01(0) = ων(a)− ων(b).

Thus, if ων(a) ≥ ων(b), then, thanks to (5.11) and
(5.12), we get: l01 = 0. If ων(a) ≥ ων(b), then
Pt(f(a) = 0 and f(b) = 1) −→ 0 as t −→ +∞. Said
differently, if there exists a and b such that ων(a) ≥
ων(b) and f(a) = 0 and f(b) = 1, then pn,k(f) −→ 0
as n −→ +∞. The only Boolean functions weighted
by pn,k when n tends to infinity are those verifying
∀a, b such that ων(a) ≥ ων(b) ⇒ f(a) ≥ f(b). And
those functions are threshold functions: only threshold
functions can be weighted by the asymptotic law of the
pn,k, if this law exists.

The calculations we made in the non-uniform posi-
tive model can be done again in this case to prove that
Pt(f(a) = 1) is a constant for all a. Thus Pt(f(a) =
1) = ων(a) and for all j ∈ J1, 2kK,

pn,k(Tν,ων(a(1))) + . . .+ pn,k(Tν,ων(a(j))) −→ ων(a
(j)).

Thus pn,k(Tν,ων(a(j))) −→ ων(a
(j)) − ων(a

(j−1)), and

as
∑2k

j=1 ων(a
(j)) − ων(a

(j−1)) = 1, we indeed proved
Theorem 6.

6 Simple tautologies

6.1 Proof of Theorem 3

Proof. The proof has two steps: first, we compute the
law of the number fn of premises that are reduced to a
simple leaf in a growing tree of size n - we call them nice
premises; and second, we calculate the probability to get
a simple tautology by conditioning over the number of
nice premises.

The first step can be handled by modelling the
system by a Pólya urn. Indeed, let us consider an urn
containing three kinds of balls, representing three kinds
of leaves of the tree. The white balls, standing for the
nice premises; one red ball, standing for the goal of
the Boolean expression; and some black balls standing
for the other leaves. When the growing tree grows, we
choose one of its leaves (i.e. one of the balls) uniformly
at random, and

• if we choose the red ball, then we put it back into
the urn and add a white ball (i.e. a nice premise);

• if we choose a white ball, then we remove it from
the urn and add two black balls into the urn;

• if we choose a black ball, then we put it back into
the urn and add another black ball.

Morcrette [Mor10] has shown that (see also [FGP05] for
a general approach by analytic combinatorics method):

(6.13) P(fn = q) =
1

q!



e
−1 −

∑

j≥n+1−q

(−1)j

j!



 .

Let us now calculate Pn,k(STk) by conditioning over the
number of nice premises: Pn,k(STk) =

∑n
q=1 P(fn =

q)
(
1−

(
1− 1

k

)q)
since

(
1−

(
1− 1

k

)q)
is the probability

that one of the nice premises is labelled by the same
label as the goal of the Boolean expression. Let c =(
1− 1

k

)
.Pn,k(STk) =

n∑

q=1

1

q!

(

e
−1 −

∑

j≥n+1−q

(−1)j

j!

)

(1− cq)

=

n∑

q=1

e
−1

q!
(1− cq)−

n∑

q=1

(1− cq)

q!

∑

j≥n+1−q

(−1)j

j!

= e
−1(e− 1− e

c + 1)− e
−1

∞∑

q=n+1

(1− cq)

q!
−Rn

= 1− e
−1/k − Sn −Rn



where Rn =
∑n
q=1

(1−cq)
q!

∑

j≥n+1−q
(−1)j

j! and Sn =

e
−1
∑∞
q=n+1

(1−cq)
q! . Let show that Rn and Sn tend

to zero as n tends to infinity:
∑

j≥n+1−q
(−1)j

j! is an

alternating series, thus |
∑

j≥n−q
(−1)j

j! | ≤
1

(n+1−q)! and:

|Rn| ≤

n∑

q=1

(1− cq)

q!(n+ 1− q)!

≤
1

(n+ 1)!

n∑

q=1

(
n+ 1
q

)

(1− cq)

≤

(
2n+1 − (1 + c)n+1

)

(n+ 1)!
n→∞
−−−−→ 0.

Moreover, Sn is the remainder of a convergent series,
thus Sn

n→∞
−−−−→ 0.

6.2 Negative literals Simple tautologies have been
studied in another labelling model: an implication
model where negative literals are allowed [FGGZ10].
We can prove, just as we did for the classical implication
model, that pn,k tends to δTrue when n tends to infinity.
In this new labelling model, there are two kinds of
simple tautologies: simple tautologies of first kind,
defined in the same way as in the classic labelling model
(c.f. Definition 3), and simple tautologies of second
kind:

Definition 8. ([FGGZ10]) A tautology of second
kind is a Boolean expression in which two nice premises
are labelled respectively with a variable and its negation.
We denote by ST 1

k (resp. ST 2
k ) the set of simple tau-

tologies of first kind (resp. second kind).

It has been shown that in both the Catalan trees and in
the Galton-Watson model, all the tautologies are simple
tautologies of either first or second kind, asymptotically
when k tends to infinity [FGGZ10]. We show that it is
not the case in the growing tree model:

Theorem 7. We have Pn,k(ST 1
k )
n→+∞
−−−−−→ 1 − e

−1/2k ∼
1

2k , when k → +∞;

and Pn,k(ST 2
k )

n→+∞
−−−−−→ 1 − 1

e
(2e

1/2k − 1)k ∼ 1
4k , when

k → +∞.

Therefore, in the implication model with positive and
negative literals, there are again other tautologies
charged by the growing tree distribution, asymptotically
when k tends to infinity.

Proof. The first statement of Theorem 7 can be shown
in the same way as Theorem 3. Let us consider the

second one. The equation (6.13) still holds: we only
have to compute the probability that two nice premises
among q are labelled by a variable and its negation. The
idea is to reformulate this problem in terms of a birthday
problem [JK97]. We have to assign q balls (labels of the
nice premises) into k urns (variables). The balls are
either white or black (positive or negative literals) with
probability one half independently from the others. The
probability that at least one urn contains at least one
black ball and one white ball is the probability to get a
simple tautology of second kind.

By a symbolic method, we get that, if αr,q is the
number of assignments of q balls into k urns that
realize r times a simple tautology of second kind, then
Φ(t, z) :=

∑

r,q αr,qz
r tq

q! = (z(et − 1)2 + 2e
t − 1)k.

As Φ(t, 0) is the generating function of the number of
assignments of the q balls that do not realize a simple

tautology of second kind, we get that: Pn,k(ST 2
k |fn =

q) =
[ t
q

q! ]Φ(t,0)

(2k)q =
α0,q

(2k)q , which, thanks to (6.13) gives,

after calculation:Pn,k(ST 2
k ) = e

−1

n∑

q=0

α0,q

q! (2k)q

︸ ︷︷ ︸

Qn

−

n∑

q=0

α0,q

q! (2k)q

∑

j≥n+1−q

(−1)j

j!

︸ ︷︷ ︸

Rn

.

We then can easily show that Rn tends to zero as n

tends to infinity, and that Qn
n→+∞
−−−−−→ 1

e
Φ( 1

2k , 0). Thus,Pn,k(ST 2
k )
n→+∞
−→

1

e
Φ(

1

2k
, 0) =

1

e
(2e

1/2k − 1)k ∼
1

4k
,

when k → +∞.

7 Conclusions and perspectives

We have studied in this paper the behaviour of the
growing tree under different labelling systems. This
behaviour is very different from the Catalan trees and
the Galton-Watson trees [CFGG04], but very similar
to the balanced trees behaviour [FGG09]. Indeed,
Theorems 1, 2, 4, 5 and 6 are true for balanced trees.
The similarity may be intuitively explained by the fact
that the growing trees have a saturation level of order
lnn, i.e. a saturation level tending to infinity as the
size of the tree is growing to infinity: roughly speaking,
a big growing tree contains a big balanced tree. On
the contrary, Catalan trees and Galton-Watson trees
have a saturation level of order Θ(1). But the precise
relationship between growing trees and balanced trees
still needs to be made precise.

To sum up about the methods used in this paper, we
have to note that the analytic combinatorics approach is
useful when the asymptotic law only charges constants
(Theorems 1, 2 and 4). For the other results, we prefer
the probabilistic one, as it is more natural and give



proofs that are very similar to those developped in
[FGG09] for balanced trees.
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Appendix

Proof of Lemma 2

Proof. Let ǫ > 0. We have
lim‖Z‖∞−→∞ limx−→∞ f(x, Z) = 0; thus there ex-
ists y0 such that ∀Z such that ‖Z‖ ≥ y0,

lim
x−→∞

f(x, Z) = 0 <
ǫ

2
,

thus there exists y0 such that for all Z satisfying
‖Z‖ ≥ y0, there exists x0(Z) such that ∀x ≥ x0(Z),
‖f(x, Z)‖∞ < ǫ.

Let Y be a solution of the differential equation
Y ′(x) = f(x, Y (x)). We assume f1, . . . , fn > 0:
therefore, each component of Y is strictly increasing.
First case: ∀x, ‖Y (x)‖∞ ≤ y0. Therefore, Y (x) is
bounded, and Y (x) is indeed of order o(x).
Second case: ∃x1 such that ∀x ≥ x1, ‖Y (x)‖∞ ≥
y0. Let us denote x2 = max(x0, x1). Then, ∀x ≥
x2, ‖f (x, Y ) ‖∞ < ǫ. By interpreting the following
computations component by component, we obtain:

Y (x) = Y (x2) +

∫ x

x2

f (x, Y )
︸ ︷︷ ︸

≤ǫ

dx

≤ Y (x2) + ǫ(x− x2).

Said differently, in both cases, Y (x) = o(x) compo-
nent by component.

Proof of Lemma 3

Proof. We have dy
G(y) = dx, then

∫ y(x)

y0

dy

G(y)
= x− x̃0 with y0, x̃0 such that y(x̃0) = y0,

thus

∫ ∞

y0

dy

G(y)
−

∫ ∞

y(x)

dy

G(y)
= c0−

∫ ∞

y(x)

dy

G(y)
= x− x̃0.

Since
∫ ∞

y(x)

dy

G(y)
∼
c

y(x)
when y(x) −→∞,



we deduce c
y(x) ∼ c0 + x̃0 − x when y(x) −→ ∞, said

differently,

y(x) ∼
1

c(x0 − x)
when x −→ x0.


