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Abstract. Boltzmann models from statistical physics, combined wittmods from analytic com-
binatorics, give rise to efficient and easy-to-write altjoris for the random generation of combina-
torial objects. This paper proposes to extend Boltzmaneigeors to a new field of applications by
uniformly sampling édadamard product

Under an abstract real-arithmetic computation model, lgaréhm achieves approximate-size sam-
pling in expected tim&(n+/n) or O(n o) depending on the objects considered, witthe standard
deviation of smallest order for the component object siZzéss makes it possible to generate ran-
dom objects of large size on a standard computer. The asdigsivily relies on a variant of the
so-calledbirthday paradoxwhich can be modelled as an occupancy urn problem.
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1. Presentation

Consider the classical birthday paradox: people arrivebynene; what is the expected time we have to
wait until two people have a common birthday? The answerr®ingly low: 25. Now assume that we
only consider a birthday if it involves a boy and a girl: whathie expected time? The answer is 34. The
classical birthday paradigm has appeared at various timdwimodelling and analysis of algorithms,
but such a (rather natural) extension has received, unii] mmited attention. We present in this paper
an algorithm for the random generation of Hadamard produdisse analysis relies on a boys-and-girls
birthday model.

In 2004, Duchon, Flajolet, Louchard and Schaeffer [4] psmaba new model, the so-called Boltz-
mann model, which leads to the systematic constructionrapgers for random objects in combinatorial
classes described by specification systems. This framewasrkwo main featuresmiformity—i.e. two
objects of the same size have equal chances of being drawrd-guasi-linear complexityvhich makes
possible the efficient generation of huge objects, to addrasblems of testing and benchmarking.

Boltzmann samplers depend on a real parameter, and geaeratgect with a probability that de-
pends only on its size. Actually the size of the sampler aufipllows a Boltzmann probability distribu-
tion: the probability that a random object has size proportional ta:™ for some parameter, which can
be tuned to achieve a chosen average size. Moreover, uggagoa, one can obtain efficient exact size
or approximate size samplers. This approach differs fraer'tcursive method” introduced by Nijen-
huis and Wilf [13, 9], in that it gives the possibility of reiag the constraint of exact-size output. Since
no preprocessing phase is needed, this implies a signifgaintin complexity and approximate-size
sampling can be done in expected linear time in a variety sésaBoltzmann samplers have been devel-
oped for a whole set of combinatorial classes: labellechhgiled, and colored [4, 6, 3]. Such classes are
defined from basic elements by means of fundamental cotistnsc well known in combinatorics [8].
The present paper is part of this joint effort to obtain Bol&mn generators for all usual classes and
constructors, and focuses on the construction of an appaigisize sampler for the Hadamard product
of two combinatorial classes.

In many cases, it is useful to have two objects of the same isizwder to visualize some bias on
the properties, e.g., to evaluate the typical height of & toe the number of components in a composed
structure. Hadamard products also appear naturally whigdtiriy standard combinatorial objects such
as a drunkard'’s walk or a partition of graphs into cycles;ase [2] for a recent application to automata.

In other words, we study sampling for combinatorial objat#fined as pairs of equal-size compo-
nents, and extend the basic random sampling model to geredffimiently such objects. The main idea is
to use a (suitably tuned) rejection method, whose effici@acybe proved by an argument extending the
classical birthday problem for the waiting time of the firstlision, to an urn model with colored balls.

The plan of the paper is as follows. We recall the notion oftBobhnn sampler in the next section,
then describe in Section 3 an approximate-size samplehéHadamard product of two classes, as-
suming we already know an approximate-size sampler (fdamte a Boltzmann sampler) for each of
those classes. Section 4 is devoted to an example of Boltzrsampling for the Hadamard product:
we apply our method to generate huge constrained randonswalthe plane. We turn back to the
detailed analysis of the complexity in Section 5, where war@rthat the limit distribution of the first
collision in a generalized urn model follows a Rayleigh wligttion, which in turn gives the expected
complexity of the algorithm. As a consequence, the time derilly of our approximate-size sampler is
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O(n+/n) under reasonable assumptions. Finally, we consider thiesland possible extensions of our
approach in Section 6.

2. Boltzmann samplers and combinatorial structures

2.1. Combinatorial classes

Definition 2.1. A combinatorial clasg is a countable (or finite) set, withsazefunction|-| : C — N
and such that there are only finitely many objects of each size

Each class has ardinary generating functiodefined by

C(z) = Zzw = Z ez

vel neN

We use the following notations: Iét be a class, and be any object irC; then its size isy|.
FurthermoreC,, = {y € C| |y| = n} and¢,, = Card(C,).

Decomposable classes can be constructed from basic qghjatiesiatoms and from a set of oper-
ators — such as cartesian product, sequence, set or cycléowirg] us to build large objects out of
smaller ones. In order to construct composed objects frarb#sic ones, we need a set of rules that
allow us to build an object from simpler ones. A few of theserapors are presented on Figure 1; see
also [6, 4, 8] for a more extensive list.

‘ A Description A(z) T A(x)
€ Empty class 1 return e
Z Atomic class z return Z
B xC Cartesian product, B(z) x C(z) | return (I'B(x),I'C(x))
B+C | Disjoint union B(z)+C(z) | if Bernoulli(%)
then return I'B(x)
else returnI'C(x)
Seq(B) | Sequence 1_%;(2) | := Geometri¢B(x))
return (I'B(zx),...,I'B(x))
[ times

Figure 1. Some classical constructors, with their ordirggnyerating function and Bolzmann sampler

2.2. Boltzmann samplers

The Boltzmann model is a simple and generic framework to samificiently combinatorial objects.
It ensures that each object of a given size has the same jiigbttbbe drawn. ABoltzmann sampler
I'C(z) for an (unlabelled) combinatorial claSss a random generator that produces object$, @f such
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a way that the probability of drawing a given object C of sizen is exactly

LN o B

Since the probability for any objeetdepends only on its size, not on its shape, the probabilibgitie
induced on the objects of a fixed size is uniform.

Such a sampler comes in two flavors: firee Boltzmann sampler depends on a parametesind
generates an object of expected dizésize of the output= =C’(z)/C(z); theapproximate-siz8oltz-
mann sampler starts from a free sampler, followed by a iiejestep to ensure that the output has size
in [(1 — €)n, (1 + €)n]. Moreover, one can build automatically a sampler accorttintye specification
of a combinatorial class, by following recursively the suescribed in [4].

We can classify combinatorial classes according to thergesigape of the probability distribution of
the size of a random object: it is either flat, bumpy, or pedk¢dAs the peaked case can be transformed
into a flat distribution by pointing, we shall not consider it

The precise definitions of these distributions are givenhm section 5.3; here we shall use the
following results (see again [4] for the proof).

Fact 2.2. LetC be a combinatorial class with Boltzmann variange the time for Boltzmann generation
of a random sample i@ in approximate size i®(n). In exact size, it i$)(n o¢) if the distribution ofC
is bumpy andD(n?) if it is flat.

2.3. The Hadamard product

We next introduce the central object of this paper: Hedamard productfor which we extend the
Boltzmann formalism. The notion of the Hadamard product faidy old one; it appeared in J. S.
Hadamard’s 1899 papé@ihéoreme sur lesé&ries enteéres[11].

Definition 2.3. TheHadamard producof two classeds andC, denoted by5 @ C, is the subset aB x C
such that the two objects in a pair have exactly the sameBigghermore, itx = (3,v) € A, we define
the size ol as

ol = 18] = Il-
The generating function ol = B® Cis

A(z) = Z;)anz” = Z;)bncnz” = i j{ ?C <§> de.

where the contour is a circle around the origin taken indigediomain of analyticity of botl andC. It
is the entrywise product of the two generating functiéhs) andC(z).

3. An approximate-size sampler for the Hadamard product

Boltzmann samplers have been built for a variety of combirat operators (union, cartesian product,
cycle, ...); our aim in this paper is to present and analyzd susampler for the Hadamard product
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A = B ® C. There is a significant difference with Boltzmann samplensthe (classical) Cartesian
product [4, 8, 6]: there, only one drawing is involved for e@omponent of the pair under construction;
here we almost always need to draw more than one object faraauponent.

From now on, and for the sake of simplicity, we will say thatclass.A is flat” rather than the
more rigorous and verbose "the probability distributiortre size of a random object for the Boltzmann
generator of the clasd is flat”, and analogously for bumpy.

We consider now how we can obtain an approximate-size sarfgul¢he Hadamard product =
B ® C. We present two algorithms: the first one samples Brst approximate size, thahiin exact size;
the second one draws at each step samples offbatidC, and requires that we keep the sets of objects
obtained until this point. A variant of this algorithm deesdrandomly at each step to draw an instance
either of B or of C. We give below the first algorithm, whose principle is obdou

Algorithm 1: Naive approximate-size sampled for A = B & C
Input: The expected rangk = [(1 — ¢)n, (1 + ¢)n] for the output
Output: An object of A with size inR
1 Draw a instance oB in approximate size.;
2 Draw an instance af with exact size, the size of the instancelbbbtained in the first step.

Using Fact 2.2, we obtain at once the behaviour of this algori

Theorem 3.1. The expected time required to generate in approximate dizamdamard product of size
n from Algorithm 1 is asymptotically

e O(n?) whenB andC both follow a flat distribution,

e O(noc) whenp is flat andC is bumpy with variance%,

O(
O(n?) whenB is bumpy and is flat,
O(
O(

e O(no) when both distributions are bumpy aad= min(o g, o¢).

Proof:

WhenC is flat, we draw an approximate-size sampleffoin time O(n) whenZ3 is flat or bumpy, then
an exact-size sample fdrin time O(n?). When23 follows a flat distribution an@’ a bumpy one, we
draw an approximate-size sample f®in time O(n), then an exact-size sample oin time O(n o¢).
If B andC both follow a bumpy distribution, assume that = O(c); again we draw an object & in
approximate-size in tim&(n) and an exact-size object 6fin time O(n o¢). O

The idea underlying the second algorithms is as follows.h&esHadamard product builds pairs from
independent components, we keep a set of potential caediftateach of the components, until we find
in these sets an element dfand an element dB of the same size. This is basically a tuned rejection
sampler: we draw objects froli andC, until we have an object df and an object of (usually not
drawn at the same time) with the same size. Note that thigiigois an uniform sampler foB © C,
but it is not a Boltzmann sampler.
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Algorithm 2 : Approximate-size sampldtAfor A =B & C
Input: The expected rangR = [(1 — ¢)n, (1 + ¢)n] for the output; the positive probabilities
andgs
Output: An object of A with size inR

1B+ 9;C+g,;

2 Chooser; such that the expected size of the outpul'8{(x1) isn ;

3 Chooser; such that the expected size of the outpuF6{zs) isn ;

4 repeat

5 Decide to draw a sample &f with probability ¢;, or of C with probability ¢- ;
6 if B is choserthen

7 Randomly draw an objedtfrom the clas$3 usingI'5(x;) of size inR ;
8 if size of object is nethen B «+— B U {b}

9 else

10 Randomly draw an objeetfrom the clas€ usingI'C(xz2) of size inR ;
11 if size of object is nethen C <— C U {¢}

12 until 3(b,c) € B x C,|b] = |c
13 return a = (b, ¢);

Our algorithm generatesetsof objects for boti* A(z) andI'5(z). Its execution time will be closely
related to the cardinalities of those sets, i.e. to the nurabelements drawn. As we build sets fram
and B, the space complexity might also be in question. The key @lyae these complexities is a
modelization as a generalized birthday problem, which wesemt in Section 5, where we prove the
following result.

Theorem 3.2. The expected time required to generate in approximate dizadamard product of size
n from Algorithm 2 is asymptotically

e O(n+/n) if both B andC follow a flat distribution;
e O(nop) if Bfollows a bumpy distribution and a flat one;
e O(no) with o = min(op, o¢) when both3 andC are bumpy.

The expected space is of the same order as the expected time.

Note that we can omit the cagkflat andC bumpy, as it is —mutatis mutandis— similar to the second
case3 bumpy and’ flat. Indeed, Algorithm 2 is similar foB © C andC ® B up to the order of the output
pair.

Theorems 3.1 and 3.2 together show thlgtorithm 2 outperforms Algorithm 1 .

The actual choice of the probabilities andgs = 1 — ¢; does not change the results of this paper
(as long as they are both positive); for example we can asgurﬁe% = ¢». However, we do not have
a precise view about how to choose them wisely, and did naseéwa way to choose them depending
on the classe8 andC. Nonetheless, it is easy to see that the chgjce: ¢ is not always optimal. For
example, ifB is bumpy and flat, it is a good choice to hawg > % > ¢1. as sizes of objects drawn
from I'C will spread more that those froifi3, we have to draw more of them until a collision occurs.

Furthermore, if we want to produce a large number of objettsirilar sizes from the similar
specification, a situation which we often encounter in pcactwe can think about a variant of this
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algorithm. From one call to another with the same parametercould keep in memory the sels
andC so that a collision would occur faster. And when such a dolioccurs, we simply remove the
corresponding objects froi andC.

4. Example: A very drunk man vs. the classical drunkard

We give in this section an example where our approximate ldemamard sampler is used to build a
random object of large size. The problem we propose to exainithe following one, derived from the
classical drunkard walk.

The drunkard’s walk starts from the origin, does a zigzagkwathout memory — this is a Markov
process — and goes back to the origin. More precisely, censidre a walk on the first quadrant of the
plane where each move corresponds to a translation foltptiie vectorNE = (1,1), SE = (1,—1),
NW = (—1,1) or SW = (—1, —1). The projection of a walk of. steps on the axi€Oz) (resp.(Oy))
is a Dyck path of lengt. Conversely, choose two Dyck paths of the same lengtfuo} and{y, y}:
the drunkard’s walk is obtained by choosing, at stefy E for zy, SFE for zy, NW for Zy or SW for
zy. As is well known [1, 16], it is possible to draw a Dyck path &het lengthn in linear time: for this
simple example, our algorithm is not needed and the timerfowithg a drunkard’s walk is linear.

Now assume that the man is more than usually drunk, and thdbd® not make three consecutive
moves in any direction. In other words, the projection of Wwalk on the axis(Ox) (resp. the axis
(Oy)) is a Dyck path without three consecutive identical stepsl, the walk is the Hadamard product
of two constrained paths. Such a path admits the followingpk context-free specification D =
1+ 2yD + zxyyD + xxyDxyyD, whose generating function — when the size of a path is itshaim
of stepse.g.xy —isd(z) = (1 — z — 22 — V1 — 2z — 22 — 223 + 24) /223 with dominant singularity
p = (3—+/5)/2 ~ 0.381966012. The constrained Dyck paths are of peaked type [4], and wergtena
random path in linear time by pointing.

160
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T T T — T T
1 50 0 20 40 60 80 100 120

Figure 2. Left a classical drunkard walk; right a very drun&mwalk with the same size
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Should we want to compare this walk to the classical drurikavelk, our sampler can generate very
large such walks. Figure 2 shows two random walks. The caingi Dyck paths were generated first,
with a parameter = 1 — p ~ 0.61803398, which gives an expected size= 14376. We obtained a
constrained walk of length = 14561, then generated two random (classical) Dyck paths of theesam
length.

We conducted some experiments about the time needed to temmpch very drunk man walks.
We randomly created 2000 random walks using our algorithm ith the same value far as before,
aiming at a size 014376 — on a desktop computer with a 2.66GHz processor. On averatiea naive
implementation and without memory between each run, it #dlseconds to generate a walk, with a
standard deviation of 67 seconds. Half of the drawings haea liinished in less than 20 seconds.

On this random sample, we can observe that the very drunk rpdores a smaller and more compact
part of the quarter plane. Possible parameters for the casopamight be the extremal positions of the
walk, or the "area” of the walk, as measured for example bysthallest including rectangle, or by the
convex hull.

5. A birthday problem, and complexity of Hadamard sampling

In this section we first present a modelisation of our alparmitas a birthday problem, then outline the
proof of its complexity. A result of Selivanov [17] is centta our analysis ; this result has been recently
improved for more distributions [10]. We next examine sopecsal cases, before turning to distributions
obtained from Boltzmann generators.

5.1. Urns models and the birthday paradox

The parameter that determines the performance of our #igoiis the time to obtain for the first time
an object ofB and an object of of the same size. As we keep sets of all the object8 ahdC we
have drawn, the time of our algorithm will be the waiting tifioe the first collision, i.e. the first time we
obtainan object of3 and an object of of the same size

This can be interpreted as a variant of the classical biythmtablem, as follows. Lek be the
expected size of the objects drawn, aritle tolerance parameter: we keep those objecB@fC which
have size in the intervalln(1 — €),n(1 + €)]. The number of sizes for which we keep an object, or
equivalently the number of urns (each urn being labelled big@) isN = 2ne — 1. Each object (ball)
can have two colors (one fd# and the other fo€). With this framework, Hadamard sampling amounts
to the following random allocation problem:

e We choose a colak = 1, 2 for a ball with a constant probability,: ¢; + ¢ = 1.

¢ Knowing that the ball we draw has coléy we put it in the urn with probability py, ;: py; is the
conditional probability of drawing urfy assuming that the ball has col’qrandzz.]i1 Pri = 1.

e The probability that a random ball goes to uris thusp; = p1.:q1 + p2,ig2.

We define acollision, or abirthday, astwo balls of different colors in the same urNow let 7 be the
random variable equal to the number of balls we have to drdilvtha first collision: 7y gives precisely
the number of trials before we obtain our Hadamard product.
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The birthday problem, or paradox, is a well-known problendisicrete probability; we refer the
reader to classical treatises on this subject, e.g., F@leifor the standard approach, and to [7] for
its presentation in a combinatorial framework and genmatibn. The colored-balls problem is not a
classical variation; to the best of our knowledge its firghbegrance was in 1968, when Popova [15]
considered balls of two colors and non-uniform urns, andegae joint limiting distribution for the
numbers of urns of a single color and of the two colors. It tappeared in a paper by Nishimura and
Subaya in the mid-eighties [14], where they consideredoamifurns. The most significant result, for our
point of view, came ten years later with Selivanov [17], wibasidered the general casekofolors, and
gave first a Poisson approximation for the probability that¢ is no collision aften balls, under some
conditions on the probability distributions for the colarsd the urns, then proved a limiting theorem for
the waiting time until the first collision, reframed here foro colors:

Theorem 5.1. (Selivanov [17])
Assume thatV — oo and thatq; and g, are constant, withvy = ¢ + ¢5 = 1 — 2q1¢2. Assume
furthermore that

e (Cl)vy:=>,p?iso(1l) whenN — +o0;
¢ (C2) pmax := max;{p;} is such thap,../,/v2 < C whereC' is a constant (independent 7).

Define a normalization factar = /va(1 — wy) = /2v2¢q1¢2. Then the normalized variablesy are
asymptotically distributed with Rayleigh distribution d:énsityte*ﬁ/ 214>0, and

Pmax _ Pmax 0
21}2(1 - wz) (1 - 0(1)) B \/ dv2q192 (1 * (1))

5.2. Some extremal cases

Selivanov’s result applies for example when both probghbdistributions(p; ;) and (p2;) on the urns
are uniform: it is easy to check that = 1/n, which leads tdE[7n] = \/pPmaxn/4q1q2. When the
probability distributions are “not far from the uniform ithe sense that all;, ; (¢ = 1,2) belong to
some intervalay /N, b /N] for constanta;, andby, againve = «/n for some constant which can be
computed, an®[7x] = \/Pmaxn/4aq1G2.

We assume next that thé urns have the same probability distribution: this appeaystehens = C,
a case which is in some sense extremal for the analysis.

Lemma 5.2. Assume that the probability distributior{$; ;) and (p2;), 1 < i < N, are identical.
Then the expected value of; is maximal wherp, ,, andp, ,, are uniformly distributed, and is equal to

V/ Pmaxn/4q1¢2.

Proof:

Write p; for the common valugy, ;, £ = 1...2. If the distribution is not uniform, there exists some
such thatp; # pi+1. Define a probability distributiorip’) from (p.): p’; equal top; for j # 4,7 + 1,

p; = Api + (1 = N)pig1, andp] ; = (1 — N)p; + Api1. We compare the expected values of the first
collision when the distributions arg;) and(p;). Let7” be the random variable for the collision time
with the new distribution. A standard computation shows %@@E(T’) = 0 when\ = % and that this
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is a maximum. For this new distributiop; = p;, ;. By compacity, it follows that the worst case is
obtained when the common distributippis uniform. O

Another extremal case appears when one of the object#3,sayniformly distributed, and the other
object,C, follows a Dirac distribution. Then the waiting time for tfiest collision is the waiting time
until a specified value is obtained under the uniform distidn, and follows a geometric distribution of
parametetl /N; as a consequence the expected waiting time is linear irsitiiation.

Fact 5.3. Assume that the distributiofp; ;) is uniform. Then the worst case is obtained when the
distribution(p ;) is a Dirac distribution, i.e. when somsg , is equal to 1.

5.3. Boltzmann distributions

Following [4], we consider combinatorial classes for whible probability distribution for the size of

a random object is either flat or bumpy, — the peaked case lbingformed, by pointing, into a flat

distribution. Of course, the size 6fcan follow a similar behavior. We recall below the charaztgion

of flat or bumpy distributions and give some general resuitsaefficients or values of the functions at
the Boltzmann parameter, before turning to the analysisipatmorithm in subsequent sections.

Definition 5.4. Let N be the size of a random object drawn with parameteits first moments are
p1(z) = Ex(N) andus(x) = E.(N?); its variance isr?(z) = u2(x) — p1(7)?. Let p be the dominant
singularity of the generating function enumerating thesots.

e The Boltzmann distribution of a combinatorial classs flat if its generating functionC'(z) is
analytic at 0 with a finite radius of analyticity > 0 and satisfies the following twa-singular
conditions:

(i) The functionC(z) admitsp as its only singularity on the circle| = p and it is continuable
in a domainA(r,0) = {z|z = p,|2z| < r,arg(z — p) € (—0,0)}, for somer > p and some)
satisfying0 < 6 < 7/2;

(i) For z tending top in the A-domain,C'(z) satisfies a singular expansion of the form

C(z) ~oyp- co(1 = 2/p) * +0o((1 = 2/p)"%),a € RT.
The quantity—« is called the singular exponent 6f(z).

e The Boltzmann distribution of a combinatorial clasis bumpy! if o (x)/u;(z) — 0forz — p~,
which amounts tQua(z)/u1(z)? — 1, o(x) — +oo andC(z) is H-admissible: there exists a
function §(x) defined forz < p with 0 < 6(z) < m, such that forld| < é(z) asz — p~,
C(ze?) ~ C(z)eim@0-1/20*@)0° yniformly asz — p~, for 6(z) < |§| < 7, one gets

C(ze?) = o (S((;E))) .

The definition of a bumpy distribution given in [4] is rested to the first condition; however the conditions we add a@my v
natural; they hold for the bumpy distributions met in preeti
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We next give some approximation results on the coeffici¢hst,we shall need later on.

Lemma 5.5. LetC be a combinatorial class with generating funct@(x), andzx,, be the solution of the
equationz,,C’ (z,,)/C(z,) = n.

o If C follows a flat distribution, therz,, = p(1 — «/n) is an approximation of the Boltzmann
parameter:,, and

c ~ €0 mmoc—l
n\«
Clan) ~ a(2)s
o et mye 1 (1Y
C(xn) () <n> m _@<m> ’ @

whenm € [an, bn] for some constants andb.

e If C follows a bumpy distribution, them,, — p~ wherep is the (finite or infinite) singularity of

C(z)and
. C(zy) '
" zroc(zn)V2rm
Cn, T 1 (m —n)?

C(zy) oc(xy) V2m b <_200(xn)2

uniformly for all m asn — +oo.

Proof:
When the distribution of is flat, standard singularity analysis gives

~

Cm F(ac) pC

€o -m macfli

The approximatiorx,, of x,, comes from the definition of a flat distribution; see [4], and

C(zn) ~ co <£)ac .
Putting all this together, we obtain
Cm T o _ B 1
Clzn)  Tlap) P m L (pe (1 — ag/n))™ - " (a_c>
= flag () e

Assuming thain/n € [a, b] gives the result.
The case of a bumpy distribution comes from Hayman [12]; t&®[4, p. 25]. O



12 O. Bodini et al./ Boys-and-girls Birthdays and Hadamard érots

5.4. Selivanov’s theorem applied to Boltzmann distributios

Definel. = [(1—e)n, (1 +e)n] and® Be(z) = 3, biz', Ce(2) = 3¢ ciz'. The probability that we
draw an object oB of sizei, withi € I, isp;; = b;x’/Bc(x), whereb; is the number of objects @&
with sizei andz := =, is defined by the equationB’ (x:)/B(z) = n. A similar result holds foc, with
a parametey := y,,. What are the conditions df andC that allow us to use Selivanov’s theorem?
The (unconditional) probability for a ball to fall into uiris
7 Ciyi

Ce(y)’

bix
Be(x)

Pi = q1P1i + Q2p2i = q1 + q2

and Selivanov’s parametes = ) p7 is here

vy = ¢ Ziele b%x% + 210 Z:z'elE biciz"y’ - Ziele sz?/%
L B(x)? Be(z)Cey) 7 Ce(y)?
2 B.© Be(x2) B.® Ce(xy) 2 Ce© Cﬁ(y2)

L X s L X P ToX ) N oA P

Condition(C1), which states that; is o(1), breaks down into three parts (recall that= x,, andy := y,
are defined respectively byB'(x)/B(z) = n = yC'(y)/C(y), and vary whem — +oc):

(2)

B.® B (2% = o (Be(x)z) : 3
B.® Cs(xy) = 0 (Be(x)ce(y)) ; (4)
Ce0Cy?) = o(Cely)?). (5)

We now check that conditions (3) to (5) hold in the differestandard cases that may appear when
generating a combinatorial object by Boltzmann sampling. tdking B = C, it suffices to consider
condition (4).

5.5. Evaluation ofvy

Lemma 5.6. Let B andC follow a Boltzmann distribution, either flat or bumpy, and teandy be the
approximate values of the Boltzmann parameteid (z)/B(z) = n = yC' (y)/C(y)). Then

e If BandC are both flatB. ® Cc(xy)/Be(z) Cc(y) = ©(1/n).
e If Bisbumpy and’ is flat, B. ® Cc(xy)/Bc(z) Cc(y) = ©(1/n).
e If B andC are both bumpyB. ® Cc(zy)/B:(z) Cc(y) = ©(1/0) with 0 = min(op, o¢).

Proof:
Note that, either for a bumpy or flat distribution [4]

Of course, a similar relation holds for the class Thus the ratio we consider simplifies inf§. ©
Ce(zy)/B(x) C(y). As we consider either flat or bumpy distributions, we havedtcases to consider.

2The functions3. andC. actually depend on through the parameter we omit this parameter in our notation for simplicity’s
sake.
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If B and C both follow a flat distribution. Intuitively, a flat distribution converges to a uniform
distribution whenr — p—, and we expect the assumptions of Selivanov’s theorem th Rake
now make precise this intuition.

Equation (1) of Lemma 5.5, applied to both classes, gives

bn®™ cpy™ g ade e~ (@wFac)m/n (m)ab+ac 1
B(x) C(y) [(ap) T'(ae)

n m2’
Hence

B.® Ce(-ry) Z bmcm(xy)m

B(z)C(y) — B(x)C(y)
gt ade e~ (@vtac) myatae 1
bF(ab)F(ac) ' (_) m2

mel,
As the last sum has exact ordefn, the result is proved.

If B follows a bumpy distribution and C a flat one. We apply again Lemma 5.5 to obtain

B © Ce(-ry) _ Z bmxm ) Cmym
B@Cw) 2 B@) O
afece™%e m\ % 1 2 76,2
c =z = . e~ (m=n)? /205 (x)+0(1)
V21 Iae) op(z) mzel ( n) m ©

Now m = ©(n) in I, and we have to approximal€,, ., e~ ("~™*/275(=). By taking

— u2
w="2"" flu)=e 2z andA = E,
op(z) oB
we have that, withlu = UBl(x) being the increase im between two consecutive terms of the sum,
Z e—(m—n)Q/ZUQB(m) — Z f(u)
mel. mel,
= op(x) Y f(u)du
mel
+A
~ op(r) f(u)du
A
+o0
~ oB(x) f(u)du = ©(ay),

the last equivalence coming fromyop — 400, which comes from the bumpy condition. Putting
together all the terms, we obtain that © C.(zy)/B(x)C(y) = ©(1/n).
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e If BandC both follow a bumpy distribution. Again the approximations provided by Lemma 5.5
give

B © Ce(zy) 1 Z o~ (m=n)2(1/0%+1/0%)/2+0(1)

B(xz)C(y) opoc =

Defines by 1/s? = 1/0% + 1/02,; then

Be ® Ce(-ry) 1 —(m—n)?/2s>
—€ = TENTI) o e ,
B(z)C(y) opoc 2

mel,

and we are back to the integral we computed in the bumpy/f&, aghich gives
Z ef(mfn)g/Qs2 _ @(8)
mel,

andB. © Cc(zy)/B(x)C(y) = ©(s/opoc). The result follows from the fact that, ifg andoc
have the same ordes,also has this order; otherwisehas the same order as the smallest gf

andoc.
O

Lemma 5.7. Let B and(C follow a Boltzmann distribution, either flat or bumpy, withandy the ap-
proximate values of the Boltzmann parameters, defined®Yz)/B(z) = n = yC’ (y)/C(y); and let
vy = p? + p3. Then

e if BandC are both flatp, = ©(1/n).
o if Bis bumpy and is flat,v; = O(1/0p).

e if BandC are both bumpyy, = ©(1/0) with 0 = min(og, o¢).

Proof:
Obvious: apply the approximations provided by Lemma 5.éhtoéxpression ofi; given by (2) and
recall, in the case bumpy/flat, that = o(n). O

5.6. Complexity of the Hadamard sampler

Theorem 5.8. Let 5 andC two combinatorial classes, and defing as the waiting time to draw an
objectinB ® C.

e Ifboth classes3 andC follow a flat distribution, then the expected time for Algarn 2 isE[ry| =
O(n+/n), and the variance i©(n?).

e If B follows a bumpy distribution an@ a flat one, then the expected time for Algorithm 2 is
E[rn] = O (nop).

e If both classes3 andC follow a bumpy distribution, then the expected time for Aligfam 2 is
E[rn] = O (nmin (op,0¢)).
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Proof:

Lemmas 5.6 and 5.7 show that the conditions of Selivanoesrtm are satisfied with = ¢». Then the
normalized waiting time for the first collisianry follows a Rayleigh distribution witkx = \/2v9¢192 =

V% andEl[r,] ~ \/pmax/zlvquqg = \/pmaX/Ug. As approximate-size Boltzmann sampling runs in
linear expected time, it suffices to computein the different cases to obtain the expected number of
samples that need to be drawn, thus the expected time ofgbathm. O

5.7. Space complexity

For standard Boltzmann sampling, the space complexityiredjby the generation algorithm is propor-
tional to the size of the object. This no longer holds for tredbimard product: the space complexity of
our algorithm depends on the expected time for the firstggoti; under the assumptions of Theorem 3.2
it is of orderO(ny/n).

Assume that we want to achieve an average siz@e draw objects o andC whose size follows
a Boltzmann distribution, and keep those objects whoselsiengs to[(1 — e)n, (1 + ¢)n], withe a
fixed parameter. A reasonable value £as 0.1 = 10%. Of course, we keep only one object of each size
for B and forC. Hence, an upper bound on the number of objects in each dassscfrom the expected
time E 4 for the first two-colors collision. We can also obtain a lowerund, by considering same-color
collisions: assume that there are respectivélyand F¢ collisions in the classe8 andC before time
E 4; then the number of objects in both classeahAs, — Fz — E¢. The precise value of the space needed
to store those objects depends on their size, i.e. on thédaseof the urns with at least one ball in a
coupon-collector problem.

6. Conclusion and extensions

We have presented in this paper a general purpose apprexsizat sampler for the Hadamard product.
Our sampler works for the classical combinatorial clas@syhich it allows us to generate a random
Hadamard product in timé&(no), whereos? is the smallest of the variances for the two combinatorial
classes involved in the product.

We might consider the multivariate Hadamard product, wiigifds ak-uple of objects sharing the
same size. The analysis of the algorithm complexity againires that of the expected time, which is
an extension of the birthday problem to the waiting time lugitithe & colors appear in a single urn;
it requires an extension of Selivanov’s results, which deigh the first appearance of two colors in
the same urn. Some recent work have been done, general@rgjrthday problem [10]. Preliminary
studies seem to indicate a larger expected time, which henvemains(n?).

The Hadamard product as intermediate constructor. A restriction of the sampler we have presented
in this paper is that the Hadamard product appears dstdeonstructor. It would be desirable to extend
our sampler so that it allows for the Hadamard product to appe an intermediate constructor when
building complex objects. This requires that the probgbdistribution for the objects obtained from the
Hadamard product follows a Boltzmann distribution, whicbubd require in turn some "unbiaising” of
the random object we obtain.
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The rational case. We should mention alternative, possibly more efficient, svayobtain a Hadamard
sampler in special cases. E.g., a classical result of Btatdsthat the Hadamard product of two rational
languages is also a rational language. We consider here flvonwstructive proof of this result leads to
the construction of a sampler for the Hadamard product.

Fori € {1,2}, let A; be a deterministic automaton that recognizes the langiag€lassically, we
denote byF; its states,A4; its alphabete; its initial state,T; its terminal states and,; its transitions. We
define the Hadamard produdt; ® A, of A; and A, as the automaton with states #y x E» on the
alphabetA; x A,, such that there is a transition labelled b) between(e, f) and(¢’, f’) if and only if
(e,a,e’) and(f,b, f') are both transitions respectively iy and A,. The initial state igey, e2) and the
set of terminal states i5, x T5. Clearly, the generating function of the language recaghizy A; © As
is the Hadamard product of the generating functions of thguages.; and L.

Should we wish to build a Boltzmann generator for the Hadarpavduct of two rational languages,
rather than using our sampler we would build the Hadamardymtoof the associated deterministic
automaton, then to obtain a Boltzmann sampler from its coatbrial specification in the standard way.
In particular, using approximate size Boltzmann samplihg,expected time complexity becomes linear
in this case. Indeed, a classical approximate size Boltangameration on a flat type distribution class
is linear (and the Boltzmann distributions associated véttonal languages are always flat).
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