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1. Presentation

Consider the classical birthday paradox: people arrive oneby one; what is the expected time we have to
wait until two people have a common birthday? The answer is surprisingly low: 25. Now assume that we
only consider a birthday if it involves a boy and a girl: what is the expected time? The answer is 34. The
classical birthday paradigm has appeared at various times in the modelling and analysis of algorithms,
but such a (rather natural) extension has received, until now, limited attention. We present in this paper
an algorithm for the random generation of Hadamard products, whose analysis relies on a boys-and-girls
birthday model.

In 2004, Duchon, Flajolet, Louchard and Schaeffer [4] proposed a new model, the so-called Boltz-
mann model, which leads to the systematic construction of samplers for random objects in combinatorial
classes described by specification systems. This frameworkhas two main features:uniformity— i.e. two
objects of the same size have equal chances of being drawn — and quasi-linear complexity,which makes
possible the efficient generation of huge objects, to address problems of testing and benchmarking.

Boltzmann samplers depend on a real parameter, and generatean object with a probability that de-
pends only on its size. Actually the size of the sampler output follows a Boltzmann probability distribu-
tion: the probability that a random object has sizen is proportional toxn for some parameterx, which can
be tuned to achieve a chosen average size. Moreover, using rejection, one can obtain efficient exact size
or approximate size samplers. This approach differs from the ”recursive method” introduced by Nijen-
huis and Wilf [13, 9], in that it gives the possibility of relaxing the constraint of exact-size output. Since
no preprocessing phase is needed, this implies a significantgain in complexity and approximate-size
sampling can be done in expected linear time in a variety of cases. Boltzmann samplers have been devel-
oped for a whole set of combinatorial classes: labelled, unlabelled, and colored [4, 6, 3]. Such classes are
defined from basic elements by means of fundamental constructions, well known in combinatorics [8].
The present paper is part of this joint effort to obtain Boltzmann generators for all usual classes and
constructors, and focuses on the construction of an approximate-size sampler for the Hadamard product
of two combinatorial classes.

In many cases, it is useful to have two objects of the same size, in order to visualize some bias on
the properties, e.g., to evaluate the typical height of a tree, or the number of components in a composed
structure. Hadamard products also appear naturally when building standard combinatorial objects such
as a drunkard’s walk or a partition of graphs into cycles; seealso [2] for a recent application to automata.

In other words, we study sampling for combinatorial objectsdefined as pairs of equal-size compo-
nents, and extend the basic random sampling model to generate efficiently such objects. The main idea is
to use a (suitably tuned) rejection method, whose efficiencycan be proved by an argument extending the
classical birthday problem for the waiting time of the first collision, to an urn model with colored balls.

The plan of the paper is as follows. We recall the notion of Boltzmann sampler in the next section,
then describe in Section 3 an approximate-size sampler for the Hadamard product of two classes, as-
suming we already know an approximate-size sampler (for instance a Boltzmann sampler) for each of
those classes. Section 4 is devoted to an example of Boltzmann sampling for the Hadamard product:
we apply our method to generate huge constrained random walks in the plane. We turn back to the
detailed analysis of the complexity in Section 5, where we prove that the limit distribution of the first
collision in a generalized urn model follows a Rayleigh distribution, which in turn gives the expected
complexity of the algorithm. As a consequence, the time complexity of our approximate-size sampler is
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O(n√n) under reasonable assumptions. Finally, we consider the limits and possible extensions of our
approach in Section 6.

2. Boltzmann samplers and combinatorial structures

2.1. Combinatorial classes

Definition 2.1. A combinatorial classC is a countable (or finite) set, with asizefunction | · | : C 7→ N

and such that there are only finitely many objects of each size.

Each class has anordinary generating functiondefined by

C(z) =
∑

γ∈C

z|γ| =
∑

n∈N

cnz
n.

We use the following notations: letC be a class, andγ be any object inC; then its size is|γ|.
FurthermoreCn = {γ ∈ C | |γ| = n} andcn = Card(Cn).

Decomposable classes can be constructed from basic objects, calledatoms, and from a set of oper-
ators — such as cartesian product, sequence, set or cycle — allowing us to build large objects out of
smaller ones. In order to construct composed objects from the basic ones, we need a set of rules that
allow us to build an object from simpler ones. A few of these operators are presented on Figure 1; see
also [6, 4, 8] for a more extensive list.

A Description A(z) ΓA(x)
ε Empty class 1 return ε

Z Atomic class z return Z
B × C Cartesian product B(z)× C(z) return (ΓB(x),ΓC(x))
B + C Disjoint union B(z) + C(z) if Bernoulli

(
B(x)

B(x)+C(x)

)

then return ΓB(x)
else returnΓC(x)

Seq(B) Sequence 1
1−B(z) l := Geometric(B(x))

return (ΓB(x), . . . ,ΓB(x))
︸ ︷︷ ︸

l times

Figure 1. Some classical constructors, with their ordinarygenerating function and Bolzmann sampler

2.2. Boltzmann samplers

The Boltzmann model is a simple and generic framework to sample efficiently combinatorial objects.
It ensures that each object of a given size has the same probability to be drawn. ABoltzmann sampler
ΓC(x) for an (unlabelled) combinatorial classC is a random generator that produces objects ofC, in such
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a way that the probability of drawing a given objectγ ∈ C of sizen is exactly

Px(γ) =
1

C(x)
x|γ| =

1

C(x)
xn.

Since the probability for any objectγ depends only on its size, not on its shape, the probability density
induced on the objects of a fixed size is uniform.

Such a sampler comes in two flavors: thefree Boltzmann sampler depends on a parameterx, and
generates an object of expected sizeEx(size of the output) = xC ′(x)/C(x); theapproximate-sizeBoltz-
mann sampler starts from a free sampler, followed by a rejection step to ensure that the output has size
in [(1 − ǫ)n, (1 + ǫ)n]. Moreover, one can build automatically a sampler accordingto the specification
of a combinatorial class, by following recursively the rules described in [4].

We can classify combinatorial classes according to the generic shape of the probability distribution of
the size of a random object: it is either flat, bumpy, or peaked[4]. As the peaked case can be transformed
into a flat distribution by pointing, we shall not consider it.

The precise definitions of these distributions are given in the section 5.3; here we shall use the
following results (see again [4] for the proof).

Fact 2.2. LetC be a combinatorial class with Boltzmann varianceσ2
C ; the time for Boltzmann generation

of a random sample inC in approximate size isO(n). In exact size, it isO(nσC) if the distribution ofC
is bumpy andO(n2) if it is flat.

2.3. The Hadamard product

We next introduce the central object of this paper: theHadamard product, for which we extend the
Boltzmann formalism. The notion of the Hadamard product is afairly old one; it appeared in J. S.
Hadamard’s 1899 paperThéor̀eme sur les śeries entìeres[11].

Definition 2.3. TheHadamard productof two classesB andC, denoted byB⊙C, is the subset ofB×C
such that the two objects in a pair have exactly the same size.Furthermore, ifα = (β, γ) ∈ A, we define
the size ofα as

|α| = |β| = |γ|.

The generating function ofA = B ⊙ C is

A(z) =
∞∑

n=0

anz
n =

∞∑

n=0

bncnz
n =

1

2iπ

∮
B(ξ)

ξ
C

(
z

ξ

)

dξ.

where the contour is a circle around the origin taken inside the domain of analyticity of bothB andC. It
is the entrywise product of the two generating functionsB(z) andC(z).

3. An approximate-size sampler for the Hadamard product

Boltzmann samplers have been built for a variety of combinatorial operators (union, cartesian product,
cycle, ...); our aim in this paper is to present and analyze such a sampler for the Hadamard product
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A = B ⊙ C. There is a significant difference with Boltzmann samplers for the (classical) Cartesian
product [4, 8, 6]: there, only one drawing is involved for each component of the pair under construction;
here we almost always need to draw more than one object for each component.

From now on, and for the sake of simplicity, we will say that ”aclassA is flat” rather than the
more rigorous and verbose ”the probability distribution ofthe size of a random object for the Boltzmann
generator of the classA is flat”, and analogously for bumpy.

We consider now how we can obtain an approximate-size sampler for the Hadamard productA =
B⊙C. We present two algorithms: the first one samples firstB in approximate size, thenC in exact size;
the second one draws at each step samples of bothB andC, and requires that we keep the sets of objects
obtained until this point. A variant of this algorithm decides randomly at each step to draw an instance
either ofB or of C. We give below the first algorithm, whose principle is obvious.

Algorithm 1 : Naı̈ve approximate-size samplerΓA for A = B ⊙ C
Input : The expected rangeR = [(1− ε)n, (1 + ε)n] for the output
Output : An object ofA with size inR
Draw a instance ofB in approximate size.;1

Draw an instance ofC with exact size, the size of the instance ofB obtained in the first step.2

Using Fact 2.2, we obtain at once the behaviour of this algorithm:

Theorem 3.1. The expected time required to generate in approximate size aHadamard product of size
n from Algorithm 1 is asymptotically

• O(n2) whenB andC both follow a flat distribution,

• O(n2) whenB is bumpy andC is flat,

• O(nσC) whenB is flat andC is bumpy with varianceσ2
C ,

• O(nσ) when both distributions are bumpy andσ = min(σB , σC).

Proof:
WhenC is flat, we draw an approximate-size sample forB in timeO(n) whenB is flat or bumpy, then
an exact-size sample forC in timeO(n2). WhenB follows a flat distribution andC a bumpy one, we
draw an approximate-size sample forB in timeO(n), then an exact-size sample forC in timeO(nσC).
If B andC both follow a bumpy distribution, assume thatσC = O(σB); again we draw an object ofB in
approximate-size in timeO(n) and an exact-size object ofC in timeO(nσC). ⊓⊔

The idea underlying the second algorithms is as follows. As the Hadamard product builds pairs from
independent components, we keep a set of potential candidates for each of the components, until we find
in these sets an element ofA and an element ofB of the same size. This is basically a tuned rejection
sampler: we draw objects fromB andC, until we have an object ofB and an object ofC (usually not
drawn at the same time) with the same size. Note that this algorithm is an uniform sampler forB ⊙ C,
but it is not a Boltzmann sampler.
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Algorithm 2 : Approximate-size samplerΓA for A = B ⊙ C
Input : The expected rangeR = [(1− ε)n, (1 + ε)n] for the output; the positive probabilitiesq1

andq2
Output : An object ofA with size inR
B← ∅ ; C← ∅ ;1

Choosex1 such that the expected size of the output ofΓB(x1) is n ;2

Choosex2 such that the expected size of the output ofΓC(x2) is n ;3

repeat4

Decide to draw a sample ofB with probabilityq1, or of C with probabilityq2 ;5

if B is chosenthen6

Randomly draw an objectb from the classB usingΓB(x1) of size inR ;7

if size of object is newthenB← B ∪ {b}8

else9

Randomly draw an objectc from the classC usingΓC(x2) of size inR ;10

if size of object is newthenC← C ∪ {c}11

until ∃(b, c) ∈ B× C, |b| = |c| ;12

return a = (b, c);13

Our algorithm generatessetsof objects for bothΓA(x) andΓB(x). Its execution time will be closely
related to the cardinalities of those sets, i.e. to the number of elements drawn. As we build sets fromA
andB, the space complexity might also be in question. The key to analyze these complexities is a
modelization as a generalized birthday problem, which we present in Section 5, where we prove the
following result.

Theorem 3.2. The expected time required to generate in approximate size aHadamard product of size
n from Algorithm 2 is asymptotically

• O(n√n) if both B andC follow a flat distribution;

• O(nσB) if B follows a bumpy distribution andC a flat one;

• O(nσ) with σ = min(σB , σC) when bothB andC are bumpy.

The expected space is of the same order as the expected time.

Note that we can omit the caseB flat andC bumpy, as it is —mutatis mutandis— similar to the second
caseB bumpy andC flat. Indeed, Algorithm 2 is similar forB⊙C andC⊙B up to the order of the output
pair.

Theorems 3.1 and 3.2 together show thatAlgorithm 2 outperforms Algorithm 1 .
The actual choice of the probabilitiesq1 andq2 = 1 − q1 does not change the results of this paper

(as long as they are both positive); for example we can assumeq1 = 1
2 = q2. However, we do not have

a precise view about how to choose them wisely, and did not devised a way to choose them depending
on the classesB andC. Nonetheless, it is easy to see that the choiceq1 = q2 is not always optimal. For
example, ifB is bumpy andC flat, it is a good choice to haveq2 > 1

2 > q1: as sizes of objects drawn
from ΓC will spread more that those fromΓB, we have to draw more of them until a collision occurs.

Furthermore, if we want to produce a large number of objects of similar sizes from the similar
specification, a situation which we often encounter in practice, we can think about a variant of this
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algorithm. From one call to another with the same parameter,we could keep in memory the setsB
andC so that a collision would occur faster. And when such a collision occurs, we simply remove the
corresponding objects fromB andC.

4. Example: A very drunk man vs. the classical drunkard

We give in this section an example where our approximate sizeHadamard sampler is used to build a
random object of large size. The problem we propose to examine is the following one, derived from the
classical drunkard walk.

The drunkard’s walk starts from the origin, does a zigzag walk without memory — this is a Markov
process — and goes back to the origin. More precisely, consider here a walk on the first quadrant of the
plane where each move corresponds to a translation following the vectorNE = (1, 1), SE = (1,−1),
NW = (−1, 1) or SW = (−1,−1). The projection of a walk ofn steps on the axis(Ox) (resp.(Oy))
is a Dyck path of lengthn. Conversely, choose two Dyck paths of the same length on{x, x̄} and{y, ȳ}:
the drunkard’s walk is obtained by choosing, at stepi, NE for xy, SE for xȳ, NW for x̄y or SW for
x̄ȳ. As is well known [1, 16], it is possible to draw a Dyck path of exact lengthn in linear time: for this
simple example, our algorithm is not needed and the time for drawing a drunkard’s walk is linear.

Now assume that the man is more than usually drunk, and that hedoes not make three consecutive
moves in any direction. In other words, the projection of hiswalk on the axis(Ox) (resp. the axis
(Oy)) is a Dyck path without three consecutive identical steps, and the walk is the Hadamard product
of two constrained paths. Such a path admits the following simple context-free specification :D =
1 + xyD + xxyyD + xxyDxyyD, whose generating function — when the size of a path is its number
of steps, e.g.xy — is d(z) = (1 − z − z2 −

√
1− 2z − z2 − 2z3 + z4)/2z3 with dominant singularity

ρ = (3−
√
5)/2 ≃ 0.381966012. The constrained Dyck paths are of peaked type [4], and we generate a

random path in linear time by pointing.

Figure 2. Left a classical drunkard walk; right a very drunk man walk with the same size
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Should we want to compare this walk to the classical drunkard’s walk, our sampler can generate very
large such walks. Figure 2 shows two random walks. The constrained Dyck paths were generated first,
with a parameterx = 1 − ρ ≃ 0.61803398, which gives an expected sizen = 14376. We obtained a
constrained walk of lengthn = 14561, then generated two random (classical) Dyck paths of the same
length.

We conducted some experiments about the time needed to compute such very drunk man walks.
We randomly created 2000 random walks using our algorithm — with the same value forx as before,
aiming at a size of14376 — on a desktop computer with a 2.66GHz processor. On average,with a naive
implementation and without memory between each run, it took43 seconds to generate a walk, with a
standard deviation of 67 seconds. Half of the drawings have been finished in less than 20 seconds.

On this random sample, we can observe that the very drunk man explores a smaller and more compact
part of the quarter plane. Possible parameters for the comparison might be the extremal positions of the
walk, or the ”area” of the walk, as measured for example by thesmallest including rectangle, or by the
convex hull.

5. A birthday problem, and complexity of Hadamard sampling

In this section we first present a modelisation of our algorithm as a birthday problem, then outline the
proof of its complexity. A result of Selivanov [17] is central to our analysis ; this result has been recently
improved for more distributions [10]. We next examine some special cases, before turning to distributions
obtained from Boltzmann generators.

5.1. Urns models and the birthday paradox

The parameter that determines the performance of our algorithm is the time to obtain for the first time
an object ofB and an object ofC of the same size. As we keep sets of all the objects ofB andC we
have drawn, the time of our algorithm will be the waiting timefor the first collision, i.e. the first time we
obtainan object ofB and an object ofC of the same size.

This can be interpreted as a variant of the classical birthday problem, as follows. Letn be the
expected size of the objects drawn, andǫ the tolerance parameter: we keep those objects ofB or C which
have size in the intervall[n(1 − ǫ), n(1 + ǫ)]. The number of sizes for which we keep an object, or
equivalently the number of urns (each urn being labelled by asize) isN = 2nǫ − 1. Each object (ball)
can have two colors (one forB and the other forC). With this framework, Hadamard sampling amounts
to the following random allocation problem:

• We choose a colork = 1, 2 for a ball with a constant probabilityqk: q1 + q2 = 1.

• Knowing that the ball we draw has colork, we put it in the urni with probabilitypk,i: pk,i is the
conditional probability of drawing urni, assuming that the ball has colork, and

∑N
i=1 pk,i = 1.

• The probability that a random ball goes to urni is thuspi = p1,iq1 + p2,iq2.

We define acollision, or abirthday,astwo balls of different colors in the same urn. Now let τN be the
random variable equal to the number of balls we have to draw until the first collision:τN gives precisely
the number of trials before we obtain our Hadamard product.
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The birthday problem, or paradox, is a well-known problem ofdiscrete probability; we refer the
reader to classical treatises on this subject, e.g., Feller[5], for the standard approach, and to [7] for
its presentation in a combinatorial framework and generalization. The colored-balls problem is not a
classical variation; to the best of our knowledge its first appearance was in 1968, when Popova [15]
considered balls of two colors and non-uniform urns, and gave the joint limiting distribution for the
numbers of urns of a single color and of the two colors. It thenappeared in a paper by Nishimura and
Subaya in the mid-eighties [14], where they considered uniform urns. The most significant result, for our
point of view, came ten years later with Selivanov [17], who considered the general case ofk colors, and
gave first a Poisson approximation for the probability that there is no collision aftern balls, under some
conditions on the probability distributions for the colorsand the urns, then proved a limiting theorem for
the waiting time until the first collision, reframed here fortwo colors:

Theorem 5.1. (Selivanov [17])
Assume thatN → ∞ and thatq1 and q2 are constant, withw2 = q21 + q22 = 1 − 2q1q2. Assume
furthermore that

• (C1) v2 :=
∑

i p
2
i is o(1) whenN → +∞;

• (C2) pmax := maxi{pi} is such thatpmax/
√
v2 < C whereC is a constant (independent ofN ).

Define a normalization factorα =
√

v2(1− w2) =
√
2v2q1q2. Then the normalized variablesατN are

asymptotically distributed with Rayleigh distribution ofdensityte−t2/21t≥0, and

E[τN ] =

√
pmax

2v2(1− w2)
(1 + o(1)) =

√
pmax

4v2q1q2
(1 + o(1)).

5.2. Some extremal cases

Selivanov’s result applies for example when both probability distributions(p1,i) and(p2,i) on the urns
are uniform: it is easy to check thatv2 = 1/n, which leads toE[τN ] =

√

pmaxn/4q1q2. When the
probability distributions are “not far from the uniform”, in the sense that allpk,i (k = 1, 2) belong to
some interval[ak/N, bk/N ] for constantak andbk, againv2 = α/n for some constantα which can be
computed, andE[τN ] =

√

pmaxn/4αq1q2.
We assume next that theN urns have the same probability distribution: this appears e.g. whenB = C,

a case which is in some sense extremal for the analysis.

Lemma 5.2. Assume that the probability distributions(p1,i) and (p2,i), 1 ≤ i ≤ N , are identical.
Then the expected value ofτN is maximal whenp1,n andp2,n are uniformly distributed, and is equal to
√

pmaxn/4q1q2.

Proof:
Write pi for the common valuepk,i, k = 1...2. If the distribution is not uniform, there exists somei,
such thatpi 6= pi+1. Define a probability distribution(p′.) from (p.): p′j equal topj for j 6= i, i + 1,
p′i = λ pi + (1 − λ)pi+1, andp′i+1 = (1 − λ)pi + λ pi+1. We compare the expected values of the first
collision when the distributions are(pi) and(p′i). Let T ′ be the random variable for the collision time
with the new distribution. A standard computation shows that ∂

∂λE(T
′) = 0 whenλ = 1

2 , and that this
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is a maximum. For this new distribution,p′i = p′i+1. By compacity, it follows that the worst case is
obtained when the common distributionpi is uniform. ⊓⊔

Another extremal case appears when one of the objects, sayB, is uniformly distributed, and the other
object,C, follows a Dirac distribution. Then the waiting time for thefirst collision is the waiting time
until a specified value is obtained under the uniform distribution, and follows a geometric distribution of
parameter1/N ; as a consequence the expected waiting time is linear in thissituation.

Fact 5.3. Assume that the distribution(p1,i) is uniform. Then the worst case is obtained when the
distribution(p2,i) is a Dirac distribution, i.e. when somep2,k is equal to 1.

5.3. Boltzmann distributions

Following [4], we consider combinatorial classes for whichthe probability distribution for the size of
a random object is either flat or bumpy, – the peaked case beingtransformed, by pointing, into a flat
distribution. Of course, the size ofC can follow a similar behavior. We recall below the characterization
of flat or bumpy distributions and give some general results on coefficients or values of the functions at
the Boltzmann parameter, before turning to the analysis of our algorithm in subsequent sections.

Definition 5.4. Let N be the size of a random object drawn with parameterx; its first moments are
µ1(x) = Ex(N) andµ2(x) = Ex(N

2); its variance isσ2(x) = µ2(x)− µ1(x)
2. Let ρ be the dominant

singularity of the generating function enumerating the objects.

• The Boltzmann distribution of a combinatorial classC is flat if its generating functionC(z) is
analytic at 0 with a finite radius of analyticityρ > 0 and satisfies the following two∆-singular
conditions:

(i) The functionC(z) admitsρ as its only singularity on the circle|z| = ρ and it is continuable
in a domain∆(r, θ) = {z|z = ρ, |z| < r, arg(z − ρ) ∈ (−θ, θ)}, for somer > ρ and someθ
satisfying0 < θ < π/2;

(ii) For z tending toρ in the∆-domain,C(z) satisfies a singular expansion of the form

C(z) ∼z→ρ− c0(1− z/ρ)−α + o((1 − z/ρ)−α), α ∈ R
+.

The quantity−α is called the singular exponent ofC(z).

• The Boltzmann distribution of a combinatorial classC is bumpy1 if σ(x)/µ1(x)→ 0 for x→ ρ−,
which amounts toµ2(x)/µ1(x)

2 → 1, σ(x) → +∞ andC(z) is H-admissible: there exists a
function δ(x) defined forx < ρ with 0 < δ(x) < π, such that for|θ| < δ(x) asx → ρ−,
C(xeiθ) ∼ C(x)eiµ1(x)θ−1/2σ2(x)θ2 . Uniformly asx → ρ−, for δ(x) ≤ |θ| ≤ π, one gets

C(xeiθ) = o
(
C(x)
σ(x)

)

.

1The definition of a bumpy distribution given in [4] is restricted to the first condition; however the conditions we add are very
natural; they hold for the bumpy distributions met in practice.
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We next give some approximation results on the coefficients,that we shall need later on.

Lemma 5.5. Let C be a combinatorial class with generating functionC(z), andxn be the solution of the
equationxnC

′
(xn)/C(xn) = n.

• If C follows a flat distribution, theñxn = ρ(1 − α/n) is an approximation of the Boltzmann
parameterxn and

cm ∼ c0
Γ(α)

ρ−mmα−1;

C(xn) ∼ c0

(n

α

)α
;

cm xmn
C(xn)

∼ ααe−α

Γ(α)
·
(m

n

)α
· 1
m

= Θ

(
1

m

)

; (1)

whenm ∈ [an, bn] for some constantsa andb.

• If C follows a bumpy distribution, thenxn → ρ− whereρ is the (finite or infinite) singularity of
C(z) and

cm ∼ C(xn)

xnnσC(xn)
√
2π

;

cm xmn
C(xn)

=
1

σC(xn)
√
2π

exp

(

− (m− n)2

2σC(xn)2
+ o(1)

)

;

uniformly for all m asn→ +∞.

Proof:
When the distribution ofC is flat, standard singularity analysis gives

cm ∼
c0

Γ(αc)
ρ−m
c mαc−1.

The approximatioñxn of xn comes from the definition of a flat distribution; see [4], and

C(xn) ∼ c0

(
n

αc

)αc

.

Putting all this together, we obtain

cm xmn
C(xn)

∼ c0
Γ(αc)

ρ−m
c mαc−1 · (ρc (1− αc/n))

m · 1
c0

(
n

αc

)−αc

=
ααc

c

Γ(αc)
· 1
m
·
(m

n

)αc

· (1− αc/n)
m.

Assuming thatm/n ∈ [a, b] gives the result.
The case of a bumpy distribution comes from Hayman [12]; see also [4, p. 25]. ⊓⊔
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5.4. Selivanov’s theorem applied to Boltzmann distributions

DefineIǫ = [(1− ǫ)n, (1 + ǫ)n] and2 Bǫ(z) =
∑

i∈Iǫ
biz

i, Cǫ(z) =
∑

i∈Iǫ
ciz

i. The probability that we
draw an object ofB of sizei, with i ∈ Iǫ, is p1,i = bix

i/Bǫ(x), wherebi is the number of objects ofB
with sizei andx := xn is defined by the equationxB

′
(x)/B(x) = n. A similar result holds forC, with

a parametery := yn. What are the conditions onB andC that allow us to use Selivanov’s theorem?
The (unconditional) probability for a ball to fall into urni is

pi = q1p1,i + q2p2,i = q1
bix

i

Bǫ(x)
+ q2

ciy
i

Cǫ(y)
,

and Selivanov’s parameterv2 =
∑

i p
2
i is here

v2 = q21

∑

i∈Iǫ
b2i x

2i

Bǫ(x)2
+ 2q1q2

∑

i∈Iǫ
bicix

iyi

Bǫ(x)Cǫ(y)
+ q22

∑

i∈Iǫ
c2i y

2i

Cǫ(y)2

= q21
Bǫ ⊙Bǫ(x

2)

Bǫ(x)2
+ 2q1q2

Bǫ ⊙ Cǫ(xy)

Bǫ(x)Cǫ(y)
+ q22

Cǫ ⊙ Cǫ(y
2)

Cǫ(y)2
. (2)

Condition(C1), which states thatv2 is o(1), breaks down into three parts (recall thatx := xn andy := yn
are defined respectively byxB

′
(x)/B(x) = n = yC

′
(y)/C(y), and vary whenn→ +∞):

Bǫ ⊙Bǫ(x
2) = o

(
Bǫ(x)

2
)
; (3)

Bǫ ⊙ Cǫ(xy) = o (Bǫ(x)Cǫ(y)) ; (4)

Cǫ ⊙ Cǫ(y
2) = o

(
Cǫ(y)

2
)
. (5)

We now check that conditions (3) to (5) hold in the different,standard cases that may appear when
generating a combinatorial object by Boltzmann sampling. By taking B = C, it suffices to consider
condition (4).

5.5. Evaluation ofv2

Lemma 5.6. Let B andC follow a Boltzmann distribution, either flat or bumpy, and let x andy be the
approximate values of the Boltzmann parameters (xB

′
(x)/B(x) = n = yC

′
(y)/C(y)). Then

• If B andC are both flat,Bǫ ⊙ Cǫ(xy)/Bǫ(x)Cǫ(y) = Θ(1/n).

• If B is bumpy andC is flat,Bǫ ⊙ Cǫ(xy)/Bǫ(x)Cǫ(y) = Θ(1/n).

• If B andC are both bumpy,Bǫ ⊙ Cǫ(xy)/Bǫ(x)Cǫ(y) = Θ(1/σ) with σ = min(σB , σC).

Proof:
Note that, either for a bumpy or flat distribution [4]

Bǫ(x) = Θ(B(x)).

Of course, a similar relation holds for the classC. Thus the ratio we consider simplifies intoBǫ ⊙
Cǫ(xy)/B(x)C(y). As we consider either flat or bumpy distributions, we have three cases to consider.

2The functionsBǫ andCǫ actually depend onn through the parameterǫ; we omit this parameter in our notation for simplicity’s
sake.
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• If B and C both follow a flat distribution. Intuitively, a flat distribution converges to a uniform
distribution whenx → ρ−, and we expect the assumptions of Selivanov’s theorem to hold. We
now make precise this intuition.

Equation (1) of Lemma 5.5, applied to both classes, gives

bmxm

B(x)
.
cmym

C(y)
∼ ααb

b ααc

c e−(αb+αc)m/n

Γ(αb) Γ(αc)
·
(m

n

)αb+αc

· 1

m2
.

Hence

Bǫ ⊙ Cǫ(xy)

B(x)C(y)
∼

∑

Iǫ

bmcm(xy)m

B(x)C(y)

∼ ααb

b ααc

c e−(αb+αc)

Γ(αb) Γ(αc)
·
∑

m∈Iǫ

(m

n

)αb+αc

· 1

m2
.

As the last sum has exact order1/n, the result is proved.

• If B follows a bumpy distribution and C a flat one.We apply again Lemma 5.5 to obtain

Bǫ ⊙ Cǫ(xy)

B(x)C(y)
=

∑

m∈Iǫ

bmxm

B(x)
· cmym

C(y)

∼ ααc

c e−αc

√
2π Γ(αc)σB(x)

∑

m∈Iǫ

(m

n

)αc 1

m
· e−(m−n)2/2σ2

B
(x)+o(1).

Nowm = Θ(n) in Iǫ and we have to approximate
∑

m∈Iǫ
e−(m−n)2/2σ2

B
(x). By taking

u =
m− n

σB(x)
, f(u) = e−

u
2

2 andA =
nǫ

σB
,

we have that, withdu = 1
σB(x) being the increase inu between two consecutive terms of the sum,

∑

m∈Iǫ

e−(m−n)2/2σ2

B
(x) =

∑

m∈Iǫ

f(u)

= σB(x)
∑

m∈Iǫ

f(u) du

∼ σB(x)

∫ +A

−A
f(u) du

∼ σB(x)

∫ +∞

−∞
f(u)du = Θ(σb),

the last equivalence coming fromn/σB → +∞, which comes from the bumpy condition. Putting
together all the terms, we obtain thatBǫ ⊙ Cǫ(xy)/B(x)C(y) = Θ(1/n).
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• If B and C both follow a bumpy distribution. Again the approximations provided by Lemma 5.5
give

Bǫ ⊙ Cǫ(xy)

B(x)C(y)
∼ 1

σB σC

∑

m∈Iǫ

e−(m−n)2(1/σ2

B
+1/σ2

C
)/2+o(1).

Defines by 1/s2 = 1/σ2
B + 1/σ2

C ; then

Bǫ ⊙ Cǫ(xy)

B(x)C(y)
∼ 1

σB σC

∑

m∈Iǫ

e−(m−n)2/2s2 ,

and we are back to the integral we computed in the bumpy/flat case, which gives
∑

m∈Iǫ

e−(m−n)2/2s2 = Θ(s)

andBǫ ⊙ Cǫ(xy)/B(x)C(y) = Θ(s/σBσC). The result follows from the fact that, ifσB andσC
have the same order,s also has this order; otherwises has the same order as the smallest ofσB
andσC .

⊓⊔

Lemma 5.7. Let B andC follow a Boltzmann distribution, either flat or bumpy, withx andy the ap-
proximate values of the Boltzmann parameters, defined byxB

′
(x)/B(x) = n = yC

′
(y)/C(y); and let

v2 = p21 + p22. Then

• if B andC are both flat,v2 = Θ(1/n).

• if B is bumpy andC is flat,v2 = Θ(1/σB).

• if B andC are both bumpy,v2 = Θ(1/σ) with σ = min(σB , σC).

Proof:
Obvious: apply the approximations provided by Lemma 5.6 to the expression ofv2 given by (2) and
recall, in the case bumpy/flat, thatσB = o(n). ⊓⊔

5.6. Complexity of the Hadamard sampler

Theorem 5.8. Let B andC two combinatorial classes, and defineτN as the waiting time to draw an
object inB ⊙ C.

• If both classesB andC follow a flat distribution, then the expected time for Algorithm 2 isE[τN ] =
O(n√n), and the variance isO(n2).

• If B follows a bumpy distribution andC a flat one, then the expected time for Algorithm 2 is
E[τN ] = O (nσB).

• If both classesB andC follow a bumpy distribution, then the expected time for Algorithm 2 is
E[τN ] = O (nmin (σB, σC)).
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Proof:
Lemmas 5.6 and 5.7 show that the conditions of Selivanov’s theorem are satisfied withq1 = q2. Then the
normalized waiting time for the first collisionατN follows a Rayleigh distribution withα =

√
2v2q1q2 =√

v2
2 andE[τn] ∼

√

pmax/4v2q1q2 =
√

pmax/v2. As approximate-size Boltzmann sampling runs in
linear expected time, it suffices to computev2 in the different cases to obtain the expected number of
samples that need to be drawn, thus the expected time of the algorithm. ⊓⊔

5.7. Space complexity

For standard Boltzmann sampling, the space complexity required by the generation algorithm is propor-
tional to the size of the object. This no longer holds for the Hadamard product: the space complexity of
our algorithm depends on the expected time for the first collision; under the assumptions of Theorem 3.2
it is of orderO(n√n).

Assume that we want to achieve an average sizen: we draw objects ofB andC whose size follows
a Boltzmann distribution, and keep those objects whose sizebelongs to[(1 − ε)n, (1 + ε)n], with ε a
fixed parameter. A reasonable value forε is 0.1 = 10%. Of course, we keep only one object of each size
for B and forC. Hence, an upper bound on the number of objects in each class comes from the expected
timeEA for the first two-colors collision. We can also obtain a lowerbound, by considering same-color
collisions: assume that there are respectivelyEB andEC collisions in the classesB andC before time
EA; then the number of objects in both classes is2EA−EB−EC. The precise value of the space needed
to store those objects depends on their size, i.e. on the locations of the urns with at least one ball in a
coupon-collector problem.

6. Conclusion and extensions

We have presented in this paper a general purpose approximate-size sampler for the Hadamard product.
Our sampler works for the classical combinatorial classes,for which it allows us to generate a random
Hadamard product in timeO(nσ), whereσ2 is the smallest of the variances for the two combinatorial
classes involved in the product.

We might consider the multivariate Hadamard product, whichbuilds ak-uple of objects sharing the
same size. The analysis of the algorithm complexity again requires that of the expected time, which is
an extension of the birthday problem to the waiting time until all the k colors appear in a single urn;
it requires an extension of Selivanov’s results, which dealwith the first appearance of two colors in
the same urn. Some recent work have been done, generalizing the birthday problem [10]. Preliminary
studies seem to indicate a larger expected time, which however remainso(n2).

The Hadamard product as intermediate constructor. A restriction of the sampler we have presented
in this paper is that the Hadamard product appears as thefinal constructor. It would be desirable to extend
our sampler so that it allows for the Hadamard product to appear as an intermediate constructor when
building complex objects. This requires that the probability distribution for the objects obtained from the
Hadamard product follows a Boltzmann distribution, which would require in turn some ”unbiaising” of
the random object we obtain.
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The rational case. We should mention alternative, possibly more efficient, ways to obtain a Hadamard
sampler in special cases. E.g., a classical result of Borel states that the Hadamard product of two rational
languages is also a rational language. We consider here how aconstructive proof of this result leads to
the construction of a sampler for the Hadamard product.

For i ∈ {1, 2}, letAi be a deterministic automaton that recognizes the languageLi. Classically, we
denote byEi its states,Ai its alphabet,ei its initial state,Ti its terminal states and∆i its transitions. We
define the Hadamard productA1 ⊙ A2 of A1 andA2 as the automaton with states inE1 × E2 on the
alphabetA1 ×A2, such that there is a transition labelled(a, b) between(e, f) and(e′, f ′) if and only if
(e, a, e′) and(f, b, f ′) are both transitions respectively inA1 andA2. The initial state is(e1, e2) and the
set of terminal states isT1×T2. Clearly, the generating function of the language recognized byA1⊙A2

is the Hadamard product of the generating functions of the languagesL1 andL2.
Should we wish to build a Boltzmann generator for the Hadamard product of two rational languages,

rather than using our sampler we would build the Hadamard product of the associated deterministic
automaton, then to obtain a Boltzmann sampler from its combinatorial specification in the standard way.
In particular, using approximate size Boltzmann sampling,the expected time complexity becomes linear
in this case. Indeed, a classical approximate size Boltzmann generation on a flat type distribution class
is linear (and the Boltzmann distributions associated withrational languages are always flat).
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