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NORMAL LIMITING DISTRIBUTIONS FOR PROJECTION AND
SEMIJOIN SIZES*

DANIELE GARDY'

Abstract. This paper presents classes of bivariate generating functions associated with the
probability distributions of parameters on sets of points (sizes of derived relations in a relational
data base) that correspond to asymptotically normal distributions. These results are extended to
give some conditions under which the numbers a,, ;, defined by En & A,k ZFy™ = ¢(z,y)? follow a
Gaussian limiting distribution. ’
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1. Introduction. The aim of this paper is to study some parameters that can be
defined on sets of points obtained by random sampling without replacement from an
initial domain A. We examine the probability distribution of these parameters, under
the hypothesis that the size of the domain A and the sample size grow to infinity.
More precisely, we assume that we know the probability distribution on A, and we
want to show that, for a large class of these distributions, the probability distributions
of the parameters that we consider are asymptotically normal.

Our tools for proving this convergence are the multivariate generating function of
the parameter under study and the size(s) of the set(s) of points, and classical results
on analytic functions and the Laplace transform. Bivariate generating functions for
which the convergence toward a normal distribution holds are studied, for example,
in [2], [4], [8]. Our approach differs from these works mostly in that the generating
functions considered here depend on d, one of the parameters that grow to infinity.
We consider probability or counting generating functions, which are themselves of the
form “dth power of a function.”

The plan of the paper is as follows: We present the parameters that we intend
to study in §2. There we give several interpretations of these parameters, both prob-
abilistic and related to data bases in computer science. We formally introduce our
modelization and notations in §3. We next give our results in §§4 and 5 and prove
them in §6.

2. Sets of points, relations, and sums of random variables.

2.1. Sets of points. We first define the set A of “legal” points. A point in
a two-dimensional space is an ordered pair (z,y). We assume that each coordinate
takes its value in a finite domain, denoted, respectively, by Dx and Dy, on which a
probability distribution is defined. Throughout the paper, dx represents the size of
the set Dx, and dy the size of the set Dy. We also assume that the values of a point
on its first and second coordinates are independent; i.e., the probability distribution
on A = Dy x Dy is the product of the probability distributions on Dx and Dy.

We consider a random subset R of A built in one of the following ways:
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o In the first case, we obtain R by drawing n independent random points with-
out replacement from A;

e We may also draw n independent random samples without replacement from
Dy, then complete each pair by drawing independently the y-value from Dy-.
In this case, each value of Dx appears at most once in a set R, but a given
value of Dy may be present in several pairs of R.

Of course, the symmetrical rule also exists: We can draw a sample without re-
placement from Dy, then complete it by sampling from Dx. We define on R a first
parameter f(R) : “number of distinct z-values” (or “number of distinct y-values” ).
The second parameter g(R, S) in which we are interested is the size of the set of points
obtained by drawing two independent sets R and S, then suppressing from R all the
points (z,y) whose value z on the first coordinate does not appear in a pair of S. The
sets R and S may take their values in the same sample space Dx x Dy or in two
different spaces Dx x Dy and Dx x Dy.

We want to investigate the relationship between the size of B (number of points
in R) and f(R), and between the sizes of R and $and g(R, S), for different probability
distributions on the domains Dx, Dy, and Dy. More precisely, we are interested in
the conditional probability distribution of f(R) for a given size of R, and in that of
g(R, S) for given sizes of R and S. We study these distributions when the size of the
domain Dy and the numbers of samplings (sizes of the sets of points R and S) grow
to infinity, and we show that they become asymptotically normal in many cases.

2.2. Relational data bases and sizes of relations. Those who are familiar
with that part of computer science that deals with relational data bases may have
noticed that the sets of points R and S defined in §2.1 are instances of relations of a
particular type. The coordinates X and Y, or X and U, are the so-called attributes of
relations R and S, and the points are the tuples of the relations. The parameters f(R)
and g(R, S) are, respectively, the sizes of the projection of relation R on attribute X
(or attribute Y) and of the semijoin of relations R and S on attribute X. These sizes
are important parameters in query optimization, which aims at minimizing the cost
of executing a query on the data base. We refer to [18], [20] for general texts on
relational data base theory, to [15], [19] for surveys on query optimization and on the
evaluation of relation sizes, and to [9], [11], [12] for a complete presentation of the
problem of relation sizes and its modelization in terms of generating functions. We
mention in [12] that the probability distributions of the sizes of relations obtained by
a projection or a semijoin were (empirically) found to follow asymptotically normal
distributions. Here we make precise the conditions under which this convergence
holds and give the mathematical proofs. We also prove that complete knowledge
of the probability distributions on all attributes is not necessary to characterize the
asymptotic distribution of the derived size, and that it often suffices to know the
distribution on the domain of the attribute on which the projection or the semijoin
takes place.

The classical operations defined on relational data bases are the set operations
(intersection, union, and symmetrical difference), the projection, and several types
of join, mostly the equijoin and the semijoin [18], [20]. We restrict this paper to
the projection and semijoin. The intersection is related to a special case of semijoin,
and the sizes of the union and difference are very easily computed from the sizes of
the intersection and of the initial relations. We do not consider the equijoin in this
paper. One justification is that query optimizers often use a sequence of semijoins
to reduce data before computing a “full” equijoin, and that an important part of



NORMAL LIMITING DISTRIBUTIONS 221

the cost of the operation comes from the semijoin part. We must also admit that
the generating functions associated with the equijoins are less easy to study than the
functions associated with the semijoins, and we defer them to a forthcoming paper
[10].
We assume that the relations we consider have two (sets of) attribute(s): X and
Y or U. Throughout the paper, X denotes the join or projection attribute. We restrict
ourselves to the following three schemes of relations:
e In the case of a free relation, there is total independence between the values
taken by the different tuples. This is the first case of §2.1;
e We may also consider relations where attribute X is a key, i.e., in a given
instance of the relation the z-value of a tuple uniquely determines its yvalue.
This is the second case of §2.1;
e Finally, we consider the symmetrical case, where attribute Y is key of rela-
tion R.
Of course, there are many more possible schemes of relations. We give in [9], [12]
generating functions for several of them.

2.3. Sums of random variables. It can be recognized that the parameters
f(R) and g(R,S) defined in §2.1 are instances of a common problem: We study the
limiting distribution of a sum of identically distributed dependent random variables
when the number of variables grows to infinity.

Given two sets R and S built as described in §2.1, we define two random variables
for each ¢ in Dx: v; and w; are, respectively, the number of points of R or § whose
value on the first coordinate is i. These variables take their values in {0---dy}, and
the case where 7 does not appear in a pair of, say, R corresponds to v; = 0. The sizes
of R and S can be expressed as

> v oand Y w

1<i<dy 1<i<dx

The size of the projection of R on the first coordinate is

E ug, with u; = 1,,50.
1<i<dx

The size of the semijoin of relations R and S can also be written as

[ ’
E u;,  with u; = v; - 1y, 50.
1<i<dx

If we assume a uniform probability distribution on the domain Dy, then the random
variables u;, 1 < 7 < dx (or the ui) follow an identical distribution. Our problem,
then, is to study the sum of the u;, or the sum of the u;, under the conditions that the
sums of the v; and w; are known and when the total number dy of variables grows
to infinity.

In the case of independent random variables u;, the central limit theorem, or some
extensions of it when the variables are not uniformly distributed (see, for example,
[13]), allows us to prove that the distribution of the sum 3, ;. u; is asymptoti-
cally normal for large n. We see here that, although the random variables are no
longer independent, the correlation between them is weak enough that the limiting
distribution is still Gaussian.
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3. Models and notations.

3.1. Probability distributions on attribute domains. We consider two
classes of distributions on a finite domain D of size d and denote by p; 4 the prob-
ability that the ith element of the domain is selected when choosing at random an
clement of D. Hence we have that ) ;piq¢ = 1. The subscript emphazises the fact
that the probability distribution depends on the number d of elements in the domain.
Without loss of generality, we can assume that the p; 4 are decreasing when i grows,
for fixed d. The two classes are defined as follows:

(Z) YicicaPia® — 0 for d— +00;

(G) For each fixed i, p;a — p; for d — +00, and the {p;} define a probability
distribution.

Class (Z) is named after the Zipf distribution: p; 4 proportional to 1/ i€ for 1 <
i < d and fixed d. The uniform probability distribution, the so-called “80% — 20%"
distributions and Zipf distributions for 0 < C < 1 are members of this class. A
probability distribution on a domain of fixed size dg (pi,d = Pi,do for i < do and p;a =0
for i > dp), Zipf distributions for C > 1, and geometric distributions belong to class
(G). Intuitively, distributions of class (Z) are not too far from the equiprobable case,
and distributions of class (G) are those for which the probability of the “diagonal”
{(i,7)} has a nonnull limit.

Distributions of classes (Z) and (G) share the uniform convergence, for bounded t,
of the generating function A(£) = [T;<;<a(1 + pi.at) associated with the probabilities
of the sets of distinct items, toward a function (t).} Probability distributions of
class (Z) are simply characterized by o(t) = et. Anticipating the results presented
below, we can see that the distributions on the attributes that do not participate in
the projection or in the join (attributes Y and U) matter only as long as they belong
cither to class (Z) or to class (G). In particular, all distributions of class (Z) give
distributions for the projection or semijoin size that converge asymptotically to the
same normal distribution, uniquely characterized by its moments.

3.2. Probability distributions on relations. We recall the independence as-
sumptions of §2.1, translated in terms of the following relations:

(i) The two coordinates of a tuple (point) are independent;

(ii) The tuples (points) of a given relation (set) are independent, as far as this is

compatible with the constraints on the relation (free relation or relation with
a key);

(ili) When we consider two relations R and S, these two relations are independent.

Condition (i) ensures that the probability distribution on a domain A = Dx x Dy
is the product of the probability distributions on domains Dy and Dy, and condition
(iii) merely states that the probability distribution of a couple (R, S) is the product of
the probabilities of R and S. Condition (ii) was detailed in §2.1 and deserves further
explanation.

The underlying idea is that the probability distribution on a relation R is pro-
portional to the probability of each of its points: Prob(R) = k - [[,cg Prob(t). The
constant k is independent of R and is chosen to obtain a probability distribution on
relations; it varies according to the rule for building R, which may restrict the set of

1 The generating function that gives the probabilities of the finite sets of elements is actually
Ao(t) = H1<i<d ((1 +ps,at)/(1 +Pi,d))- It differs from the function A(t) that we use in the paper
by a constant multiplicative factor H1<i<d(1 + pi,4), which disappears when we study conditional
distributions; see §3.3.
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admissible relation instances. For example, assume that the probability distribution
on attribute X is given by {g;,1 < j < dx} and that the distribution on attribute ¥
is given by {p;,1 <4 < dy}; in the case of a free relation (first case of §2.1), we have
that k = 1/]]; ;(1 + pig;); in the case of a relation with key X (second case of §2.1),
we have that k = 1/[].(1+¢;) [12].

3.3. Limiting distributions. We recall that we want to investigate the limiting
distribution of the size of a relation obtained either by the projection of a relation
of known size r or by the join of two relations of known sizes r and s. Thus the
problems presented in this paper can be cast into a common frame: given a doubly
indexed sequence of real positive numbers (a;,),? our goal is to study the limiting
distribution of the normalized sequence (b, = ay,»/ (3_, as,»)) when 7 goes to infinity.
We assume that we know the function ®(z,y) = ), a,z'y". The problem can
be reformulated using the probability distribution defined by the generating function
f(z) = [y"]®(z,y)/[y"]®(1,y): This is the conditional probability distribution of the
parameter “marked” by z in @, knowing that the parameter “marked” by y in @
(usually the size of some structure) has value r. We study the limit of this conditional
distribution when 7 and d go to infinity.

For example, we define a;, as the number of relations of size 7 whose projection
is of size [, and we want to estimate the size of the projection of a relation of known
size r; d is the size of the domain on which we project the relation. We see in §4
that the generating function that appears in the study of the projection size has the
general form ®(z,y) = (1 — = + zA(y))%

In this form, it is obvious that, at least for uniform distributions on the underlying
domains, it does not matter if ® is a probability or counting generating function in the
variable y: This corresponds to an extra factor in the term [y"]®(z,y), which cancels
in f(z). In our example, the generating function for the projection sizes might be a
probability generating function with respect to z, and a counting generating function
with respect to y. For the same reason, we may indifferently use an ordinary or
exponential function in ¥, according to the underlying structure (this holds even if
the distribution on the attribute domains are not uniform). Finally, we use probability
generating functions ® either for joint probabilities or for conditional probabilities (we
assume that we know the size of the parameter marked by y) as the need arises: The
generating function for the conditional probability satisfies [y"]®(1,y) = 1, which
gives f(z) = [y"]®(z, y)-

We give our theorems in the case where the probability distribution on the domain
Dx of the projection or join attribute X is uniform, and its size dx 3 is related in
a simple way to the sizes of the relevant relations. For example, in Corollary 1 the
size dx of Dx is of the order of the size r of relation R. We also assume that, when
the sizes dy and dy of the domains Dy and Dy grow to infinity, they do so without
relation to dx. However, the exact relation between these parameters is not strict:
The proofs can be adapted in many cases to show the convergence toward normal
distributions with suitably modified moments.

3.4. Analytic functions with positive coefficients. For easy reference, we
introduce here a property relative to an analytic function that we need to prove

2 The numbers a; » actually depend on a third parameter d in such a way that the function
b(z,y) = 21 " a-zly” is of the form ¢(z,y)?. See §84 and 5.
3 This is the parameter d such that ® = ¢<.
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our results and which is satisfied in all the cases studied in this paper; we call it
Property P, shown below.

PROPERTY P. A function, say A(y), is entire and not affine, with positive coeffi-
cients, such that A(0) = 1, and such that there exists no entire function A and integer
m > 2 with AM(y) = A(y™ )

The last part of Property P, A(y) # A(y™), is introduced for technical reasons,
but is in no way a restriction: If A(y) = A(y™), we just change the variable y into
y™ for the greatest such m, and the function A satisfies Property P. It can be
reformulated as in [4]: The greatest common divisor of the {r : [y"]A # 0} is 1.
Likewise, the important condition on A(0) is simply A(0) # 0; requiring that A(0) =1
merely simplifies some computations.

In Theorem 1 of §4 and in Theorems 3 and 4 of §5, we use an auxiliary function

g(y), obtained from the function A(y) by g(y) = v\ (1)/A\().

LEMMA A. Let Property P be satisfied and define g(y) =y (y)/A(y). Then g is
increasing on the interval [0, +ool.

Proof of Lemma A. As function X is entire with positive coefficients and A(0) = 1,
A has no zeros on [0, +o0o[, and the function g is well defined on this interval. Let us
define the function

D(y) = A»)(\ (@) + 97" 1)) — X (0)-

We have that g (y) = D(y)/A?(y). The definition of D in terms of A and its derivatives
can be used to get an expansion of D as a series with positive terms. This shows that
g is positive on the interval [0, +o00[ and that g is increasing on this interval. O

When the function A satisfies Property P, then, by Lemma A, the function g is
increasing; hence g(y) either has a finite limit or tends to infinity when y — +oo.
Henceforth, we use the expression lim,_, | g(y) either for a finite or an infinite limit;
in the last case, the condition that the limit is greater than some positive number A
is trivially satisfied.

4. Asymptotic distributions for projection sizes. Given a relation R with
two attributes X and Y, we want to study the size of the projection of R on attribute
X. We recall that this projection is computed by suppressing the attribute Y, then
eliminating the redundant values of attribute X: We just keep one instance of each
z-value that appears in the initial relation. We assume that the domains Dy and Dy,
where X and Y take their values, are of finite sizes dx and dy and that the relation
has 7 elements, where r is of the order of dx. We are interested in the probability
distribution of the size of the projection of R, conditioned by the initial size r of R,
when the parameters r, dx, and dy grow to infinity.

To be consistent with the schemes of relations defined in §2.1, we study a relation
with a key on the attribute Y eliminated by the projection and a relation without a
key. The case of the projection of a relation R with a key on attribute X is without
any difficulty: Each pair of R has for X-component a distinct value; as a consequence,
the projection on attribute X is composed of all the values z that appear as the first
coordinate of a pair (z,y), counted once, and has exactly the same size as the initial
relation R.

4.1. R has Y as key. Define p(l/r) as the conditional probability that the
projection of R on attribute X is of size [ when the size of R is itself equal to r,
for a uniform probability distribution on attribute X and a general probability dis-
tribution on attribute Y given by {p;a,,1 < i < dy}. To study the distribution
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of the projection size, it is convenient to use the following generating function, ex-
ponential in y: ®(z,y) = 37, p(l/r)z'y"/rl. As an intermediate step, we use the
auxiliary bivariate generating function ¥(z,y) = 21 P(l,7)z'y". In both functions
® and ¥, the variable  marks the size of the projection on attribute X, and the
variable y the size of the initial relation; p(l,7) is the joint probability that relation
R is of size r and its projection on attribute X is of size l; it is related to p(I/r) by
p(i/r) = p(,7)/ (L) p(k, 7)) = [2'y"] (2, y)/[y"]¥(1, y). We have [9], [11] that

dx
¥o) =3 () dothusax) o (1 2yt

k=0

In this formula, Ag(t) = [icicay (1 4+ piayt)/(1+ piay,)) is the generating function
describing all sets of y-values, with their associated probability. By extracting the
coefficient of y" in ¥ and computing the (exponential in y) generating function of the
conditional probabilities ®(z,y) = Yo p(/r)ztym /vl we get [11] that

(1) ®(z,y) = (1 +a(e¥/*x —1))%x.

Let us mention that there exists a closed-form expression for the conditional proba-
bilities: p({/r) = l!(dtx)d;{rS(r, 1), with S(r,1) a Stirling number of the second kind.*

Equation (1) shows that the evaluation of the projection size for a relation, with
a key on the attribute ¥ suppressed by the projection, is equivalent to the classical
occupancy problem in urn models [16]. This problem can be summarized as follows:
Given d urns and 7 balls, the balls are thrown independently and at random into
the urns, and we study the number of empty urns, or, equivalently, the number of
urns containing at least one ball. The appropriate generating function in this case
is a counting generating function, exponential in the number of balls (marked by the
variable y) and ordinary in the number of urns with at least one ball (marked by z).
Let us denote by N, the number of ways of throwing r balls into [ urns, with each
urn containing at least one ball; then [16] it follows that

ZN;,rmfyT/r! = (1 -2+ ze¥)’.

ir

It is obvious from the expression of &(z,y) in (1) (but not from that of W) that the
probability distribution on attribute ¥ does not matter. Moreover, a whole spectrum
of limiting results is known for urn models (see [16], [17] for surveys) and can be
directly applied to the projection of a relation with a key.

4.2. R is a free relation. The bivariate generating function ®(z, y) of the joint
probabilities p(l, ), where z marks the size of the projection on attribute X and y the
size of the initial relation, is [9], [11]

@(z,y) = Zp(l, rzly" = (1 -z + zA(y))%x,
Lr

1 As the notation for Stirling numbers is not standardized, we use here the notation of Comtet

[5].
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| R || @y | Asymptotic result I
X1Y || @—z+zA(y)¥x | 84.2, Cor. 1

Y = X || (1—z+zev/dx)dx | [16], [17] or §4.2, Thm. 1

FiG. 1. Generating function for the size of the projection wx (R) of R on attribute X : nx(R) =
{z|Jy : (z,y) € R}. ‘

with

Aly) = H (1+ piay ¥).°

1<i<dy

In this formula, as in §4.1, p; 4,, denotes the probability of the ith value of domain
Dy, which depends on the type of distribution and on the size of the domain.

Figure 1 sums up the generating function and the asymptotic results, either previ-
ously known or proved in this paper, for the two types of relations: a free relation and
a relation with a key. Here and in Fig. 2 in §5.1, “X 7 Y” means that neither attribute
X nor attribute Y is key of R (free relation), ¥ — X means that the attribute Y is
key of R, and X — Y (in Fig. 2) means that X is key of R.

We first give a general theorem (Theorem 1) pertaining to functions that have
the general form (1 — x + zA(y))¢. We then deduce from it a corollary dealing with
the case of a free relation. Theorem 1 can also be used to get the classical result on
urn models, or, equivalently, the result pertaining to a relation where attribute Y is
key: This is simply the case where the function A(y) is equal to e¥ or to e¥/?x,

THEOREM 1.Let Property P be satisfied. Define ®(z,y) = (1 —x +zA(y))¢. Let
d,r — 400 in such a way that r = Ad+o(d) for some positive constant A, and that
g(y) = yX (y)/My) satisfies limy_, o0 g(y) > A. Then the probability distribution
defined by the generating function f(z) = [y"]®(z,v)/[y"]®(1,y) is asymptotically
Gaussian when d — +oco. The asymptotic values of the mean and variance are defined
in terms of the unigque real positive solution p of the equation g(y) = A as follows :

- 7i ; 2 _ 1 _ 1 _ P)"Z(P)
p=d(1-555); "‘d(A(p) (o) g’(pw(p))'

COROLLARY 1. Let R[X,Y] be a free relation with a uniform probabilily distribu-
tion on the domain of attribute X Then the probability distribution of the size of the
projection of R on attribute X, conditioned by the size r = Adx +o(dx) of relation R

5 Actually, ®(z,y) is obtained from the function

Ao(t) = A®/AM) = [ ] (@ +piay v)/(1 +pisay)

by marking the tuples of R and their projection on X; this gives

dx
—z4z dx
2(y) = ((1—fc+mH(1+m,dyy))/H(1+m,d,,)) - Ll)?—nd"f”_

2

As we are interested in f(z) = [y"]®(z,y)/[¥"]@(1,y), the multiplicative factor A(1)?X cancels in
f(z), and we can use the simpler expression given in the text.
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with A a positive constant is asymptotically normal when dx — +o0o. The asymptotic
mean and variance are given by p = o dx and o? = o2dx where py and o3 are
constants that depend on the probability distribution on atiribute ¥. We now assume
that dy — +oc0 and is independent of dyx .

If the distribution on Dy satisfies hypothesis (Z), then pp = 1 — e~ and o2 =
(e — 1 — A)/e?A. If the distribution on Dy satisfies hypothesis (G), let o(t) =
[Lis:(1 + pit), where the {p;} define the limiting distribution on attribute Y, and
g(t) =t @ (t)/¢(t). Let p be the unique real positive solution of the equation g(t) = A.
The constants py and of are

po=1-1/p(p); 0§ =5 -

Moreover, g satisfies 1 — e < pg < 1.

The proof of Theorem 1 and the derivation of Corollary 1 are postponed until §6.2.
As an application of Corollary 1, we deduce that the exact probability distribution
on attribute Y has no influence on the limiting distribution as long as it stays in class
(Z) and dy — +o0.

Relation to some urn models. When the probability distribution on the domain
of attribute Y belongs to class (Z), i.e., when the function

My)= J[ (+piayw)

1<i<dy

has for limit e¥ for any fixed y and for dy — o0, the generating function ®(z,y) =
(1—z+[];<;<q, (1+Di,dy¥))?* converges pointwise toward the function (1+z(e¥ —
1))9* when dy grows to infinity and dx is constant. This function is the generating
function }_, ; N; jz'yd /4! of the number i of urns containing at least one ball when
we throw j balls independently in dx urns, and it has already appeared in the study
of a relation with a key (see §4.1). This can be explained intuitively as follows: For
large dy, the probability >, pf, 4, that we twice draw the same point in successive
trials with replacements is close to zero. Hence we may assume that the successive
trials that give the points of the relation are “asymptotically” independent, and we
get the classical urn model.

However, when the probability distribution on attribute Y belongs to class (G),
the successive trials giving the points of the relation are not independent: The prob-
ability of twice drawing the same point in random sampling with replacement is
definitely not null! (Asymptotically, it is close to Y .-, p? > 0.) This is reflected in
the limiting generating function (1 + z(¢(y) — 1))%X, which we obtain by letting dy
grow to infinity and by keeping dx constant.

Alternatively, the size of the projection on attribute X can be related to the
number of nonempty urns when we throw the balls in compleres. Again, we refer
to [17] for asymptotic results when complexes are of fixed size. In our approach, a
complex is the number of points (zp,y) in a given instance of a relation for a fixed
value zg of attribute X, and its size is a random variable taking its values in {0 - - - dy }.
Ammann [1] studies such a case when the size of a complex is bounded and for various
conditions on the numbers r of balls and d of urns: If r is of order v/d, the number of
empty urns asymptotically follows a compound Poisson distribution; for larger r, but
still with 7 = o(d), the asymptotic distribution becomes Gaussian. In our framework,
this means that the size of domain Dy is fixed and that the order of the size of the
relation is either \/dx or o(dx).
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5. Asymptotic distributions for semijoin sizes. In this section, we consider
two initial relations R and S and their semijoin on a common attribute X. The values
taken by the two relations are assumed to be independent of each other. We consider
that R and § are each built on two attributes, respectively, R[X,Y] and S[X, U]. The
semijoin of R and S on attribute X is a subset of the relation R; it is computed by
keeping in relation R only those tuples whose value on X appears in the X-column of
relation S. This operation is not symmetrical: The semijoin of R and §is not equal to
the semijoin of S and R. We recall that we assume a uniform probability distribution
on the join attribute X.

5.1. Generating functions. We use the following notation: p(t,r, s) is the joint
probability that the relations R and S have respective sizes r and s and that their
semijoin is of size t; p(t,s/r) is the joint probability that the relation S is of size s,
and that the semijoin of R and S is of size ¢, conditioned by the fact that the relation
R is of size r; and so forth. These probabilities are trivially related to one another; for
example, p(t/r,s) = p(t,7,8)/ (3, p(é, 7, s)). We define two functions Ar and Ag as in
§3.1. For example, AR is a generating function associated with the sets of elements of
R whose first value is fixed. If R is a free relation and if the probability distribution
on attribute Y is given by {piay }, then Ar(y) = Ili<ica, (1 + Pidyy). When X is
the key of R, then Ag(y) =1+ . Once again, we do not consider the probability
generating function, which only differs from Ag by a constant factor. Function Ag
describes in a similar way the legal sets of points in S.

Our aim is to study the conditional probability distribution p(t/r, s), which gives
the probability that the join has size ¢, knowing that the initial relations are, respec-
tively, of sizes r and s. Asin §4.1, we often use as an intermediary step the generating
function of another, related distribution. We use whatever probability distribution has
a generating function of a kind convenient for asymptotic study, namely o(z,y, 2)*
The rule of thumb is that, if an attribute Y or Uis the key of the relation in which it
appears (R or S), we should use a probability distribution conditioned by the size of
this relation; moreover, the generating function should be exponential in the variable
“marking” the relation. This is formalized in Theorem 2, below.

TuEOREM 2. Let R and S be two independent relations. The generating function
®(z,y,2) of the sizes of relations R and S, and of the semijoin of R and S, is given
by the table of Fig. 2, with the conventions that “X 1 Y or “X t U” corresponds
to a free relation, Y — X or U — X to a relation with key Y or U as applies, and
X — Y or X — U means that X is key of R or S, and with the following definition
of &:

o If each of the two relations R and S is either free or with a key X,

&(z,y,2) = Z Probal(t,r,s) 'y" 2%
t,r,s
o If attribute Y is key of relation R, and relation S is either free or with key X,

‘I’(xayaz) = ZProba(t,s/r) ot % 2%

t,r,8

e If relation R is free or has key X, and attribute U is key of relation S,

ZS

@(mayaz) = ZPIOba(t,T/s) b . yT : E;

t,r,8
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li R ” S ” ®(z,y,z) || Asymptotic result

XTY || X1U || Oal) + m@m)Ps(s) - 1) | [10]

XtY || X = U | (Ar(y) + 2Ar(zy))dx §5.4, Cor. 4
XtY | U— X || (Ar(y) + Ar(zy)le — 1])%x [10]

X—=Y | X1U || Q+y+ (1+zy)As(z) —1])% || §5.3, Cor. 2
XY || X=U| Q4+y+z+zyz)®x §5.4, Thm. 5
XY ||U—>X | (L+y+ (1+zy)e* —1])% §5.3, Cor. 3

Y =X || XtU | (e¥+e™[As(z) — 1)) [10]

Y = X || X - U || (e¥+ ze™)x §5.4, Cor. 5

Y =X || U— X | (e¥+e®[e* —1])dx (10]

Fi1c. 2. Generating function for the size of the relations R, S, and their semijoin on attribute

X: {(2,y)|(:1:,y) € R;3u: (z,u) € S}.

o If attributes Y and U are, respectively, keys of relations R and 9,

7' 8

D(x,y,z ZProba (t/r,s) x* %

t,r,8

Proof of Theorem 2. The ordinary counting generating functions for the cases
when none of the attributes ¥ and U is key can be found in [12]. The computation
of the joint probability generating functions when neither attribute ¥ nor attribute U
is key of its relation is straightforward, and we do not detail it. We give below the
computation of ®(z,y, z) when attribute ¥ is key of relation R and relation S is free.
The cases where relation S has for key either X or U can be dealt with in a similar
way.

We first assume that the probability distributions on attributes Y and U are
uniform. It is simpler in this case, and it has no effect on function ®, to use the
counting generating function of the sets of elements on attribute X, that is, to take
As(y) = (1+ 2)%2 instead of (1 + 2/dz)%%. Let us denote by N(t,r,s) the number of
couples of relations (R, S) with given sizes r and s, whose semijoin has size ¢, and by
N(7) the number of relations R of size r. The ordinary counting generating function

(z,y,2) =3, ., N(t,rs) 2by"2° is [12]
¥o2) = 3 (%) 0+ duy + e - D) () - 1)
k

The conditional probability p(t, s/r) is equal to N(¢,r,s)/N(r). We want to compute
@(w'l y!z) = Er}sltp(tis/r) $t ' yT/T! . 23 = Zt!‘r‘s N(t!'r) S)/N(T) ' ‘rt ) yr/‘r! ' za'

Substituting the value d% (%) for N(r) in the expression of p(t, s/r) gives

["T 5]‘1’(3:,:1;, 2’) - d’X .
p(t,s/r) = d"x(d:) = ZR: ( k) "z ](dX k+ kz)" [Z} (As(z) 1) ;

Substituting this value into the definition of ®, we get that

B = 5 (0 ) U b+ ko) Yot () U Os(a) D)

k,r,8,t
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— eV Z (dg)ek(wl)y/dx (Ag(z) = 1)k = (e¥/9x 4 e2¥/dx . [\g(2) — 1))%x .
k

The computation when at least one of the probability distributions on attributes ¥
or U is not uniform is in the same vein and presents no real difficulty. O

As in Theorem 1, we ignore in Theorem 2 constant multiplicative factors of the
type A(1); we also ignore the coefficients 1/dy of variables y or z. These factors
might hide the global structure of Fig. 2, above, and do not serve any useful purpose:
From §3.3, we know that the asymptotic study concerns the probability distribution
generated by the function f(z) = [y"2°]®(z,y,2)/[y"2°|®(1,y, z), and neither the
elimination of a multiplicative factor in ® nor the substitution of y for y/dx have
any effect on the function f. For example, the case detailed in the proof of Theo-
rem 2, starting from the probability generating function for a uniform distribution,
not from the counting generating function that we used, actually leads to the func-
tion ®g(z,y,z) = (e¥/4x + e™¥/9x (\g(z) — 1))dx ‘Ag(1)”"**, and the function given in
Fig. 2 is ®(z,y, 2) = (e¥ + €™¥(Ag(2) — 1)%* = Ag(1)4x ®y(z,dxy, z). Both functions
lead to the same conditional probability distribution.

5.2. Limiting distributions. We can show that the semijoin size is asymptot-
ically normal in several cases and that, as in the case of a projection, the probability
distributions on attributes ¥ and U have almost no importance. There are three
cases for each relation: It is free, or it has attribute X for key, or the other attribute
is key (attribute Y for R, and attribute U for S). The choices for relations R and
S are independent. As we see in §6.1, our method for proving results of asymptotic
normality requires the evaluation of the coefficient [y"2°|®(z,v,2), and we classify
the different cases according to the ease with which either one of the intermediate
coefficients [y"|®(z,y, 2) or [2°]®(z,y, z) can be computed. The possible cases for the
two relations are listed below.

1. None of relations R and S has X for key. There is no direct way to evaluate
[y"2°]®, and we must use twice Cauchy’s formula to compute it. We defer it
to a future paper [10].

2. R has X for key, but not S. The extraction of [y"]® gives a function in z and z
(df) (1—-z+ .ﬁ:/\s(z))r)\g(z)dxfr. If, moreover, attribute U is key of relation
S, then Ag(z) is the exponential function e?. See Theorem 3 and Corollaries 2
and 3.

3. 5 has X for key, but not R. We compute the coefficient of 2° in the function
®: [2°]® = (d;‘))\R(xy)s)\R(y)dx_s. If relation R has attribute Y for key,
then Ag(y) = e¥. We then must study a bivariate function in z and y. This
is done in Theorem 4 and Corollaries 4 and 5.

4. R and S each have X for key. The generating function has the simple form
®(2,y,2) = (1 +y + 2 + zyz)?X, and either one of the coefficients [y"]® and
[2°]® is easily computed. In this case, the semijoin of R and S has exactly the
same number of elements as the intersection of relation R and the projection
of relation S on attribute X, which has the same size as S. Conversely, the
intersection of two relations can be seen as a semijoin of two relations with
no other attribute than the one that is used in the join. Here again, we have
a Gaussian limiting result (Theorem 5), which we state for the intersection
of two relations built on the same attributes. Theorem 5 is also valid for
the semijoin of two relations with a uniform probability distribution on the
join attribute and without restriction on the distributions on the domains of
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attributes ¥ and U.

The corollaries to the theorems below are valid for probability distributions in
classes (Z) or (G) on the attributes Y and U, as indicated. In Theorems 3-5 and
Corollaries 2-5, A and B are strictly positive constants. In the case of a probability
distribution on either attribute Y or attribute U belonging to class (G), the domain
sizes dy or dy grow large (they are assumed to do so independently of each other
and of dx), and wg(t) or ¢g(t) denotes the limiting function [ (1 4 pit); pis
the unique real positive solution of the associated equation tog(t)/vr(t) = A or
twg(t)/s(t) = B. The existence and uniqueness of p results from Lemma A in §3.4.
The function g is defined by g(¢) = tgo;.(t)/cpg(t) in §5.3 and g(¢) = t(,o}t(t)/sz(t) in
§5.4.

5.3. X key of R. We first give the general result pertaining to generating func-
tions of the kind ®(z,y, 2) = (1+y+(1+zy)(As(z) —1))?, then the corollaries dealing
with the different cases for relation S. The proofs of Theorem 3 and of Corollaries 2
and 3 are given in §6.3.

THEOREM 3. Let Property P be satisfied (see §3.4). Define ®(z,y,2) = (1+y+
(14 zy)(A(z) — 1)) Let d,r,s — 400 in such a way that r < d, d = o(r%/?), and
5 = Bd + o(d) for some positive constant B, and that g(y) = y)\'(y)//\(y) satisfies
limy 4o g(y) > B. Then the probability distribution defined by the generating func-
tion f(x) = [y"2°|®(z,y, 2)/[y"2*]®(1,y, 2) is asymptotically Gaussian. The asymp-
totic values of the mean and variance are defined below in terms of the solution p of
the equation g(y) = B :

I S 2o (MO =1 7 pA?%(p)
w=r(1-5g) (Aﬂ(p) dA4(p)g'(p>)'

COROLLARY 2. Let R[X,Y] be a relation with a key X, and S [X,U] a free rela-
tion. We assume that the probability distribution on Dx is uniform; the probability
distribution on Dy is arbitrary. The sizes v and s of the relations R and S are as-
sumed to satisfy r < dx, dx = o(r®?), and s = Bdx (1 + o(1)). Then the probability
distribution of the size of the semijoin of R and S on attribute X, conditioned by the
sizes of R and S, is asymptotically normal.

If the distribution on Dy satisfies hypothesis (Z), the mean and variance have for
asymptotic values p = (1 — e B)r and 02 = r((e? —1)/e2B — (rB)/dxe*B). If the
probability distribution on Dy satisfies hypothesis (G), the asymptotic values of the
mean end variance are

es(p) =1 1 ppd(p)
px(p)  dx 9%(p)d (p) |

p=por = (1—1/ps(p)) r, 02=r(‘ - —

Moreover, the constant pg satisfies 1 —e=B < o < 1.

COROLLARY 3. Let R[X,Y] be a relation with a key X, and S[X,U] a relation
with a key U. We assume that the probability distribution on Dx is uniform. The
probability distributions on Dy and Dy are arbitrary. The sizes r and s of the relations
R and § are assumed to satisfy r < dx, dx = o(r3/?), and s = Bdx (1 + o(1)).
Then the probability distribution of the size of the semijoin of R and S on attribute X,
conditioned by the sizes of R and S, is asymptotically normal. The mean and variance
have for asymptotic values = (1 — e=B)r and 0% = r((eB — 1)/e2B — rB/dxe?B).
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The comparison of Corollary 2 in the case of a distribution of class (Z) on attribute
U and of Corollary 3 shows that the two asymptotic distributions of the projection
size are the same. As in the case of a projection, the exact distribution of the values
of attribute U for a free relation, as long as it is not too far from uniform, or the
existence of a key on U, are of no importance with respect to the asymptotic size of
the semijoin when dx and dy go to infinity.

5.4. X key of S. This part deals with the cases where the generating function
is of the kind ®(z,y,2) = (Ar(y) + zAr(zy))?. Here again, we first give the general
result (Theorem 4), then the applications to the semijoin size (Corollaries 4 and 5),
and we defer the proofs until §6.4.

THEOREM 4. Let Property P be satisfied (see §3.4). Define ®(z,y, z) = (My) +
zXMay))d. Let d,r,s — +oo in such a way that s < d, d = o(s*?) and v =
Ad + o(d), and that g(y) = yX (y)/A(y) satisfies limy— 400 g(y) > A. Then the
probability distribution defined by the generating function f(z) = [y 2°|®(z,y,2)/
[y"2°]®(1,y,2) is asymptotically Gaussian. The asymptotic value of the mean is
p =rs/d. The asymptotic value of the variance is defined in terms of the solution p
of the equation g(y) = A : 0% = 5(1 — s/d)pg (p)-

COROLLARY 4. Let R[X,Y] be a free relation, and S[X,U| a relation with a
key X. We assume that the probability distribution on Dx is uniform and that the
probability distribution on Dy is in class (Z) or (G); the probability distribution on
Dy is arbitrary. The sizes T and s of the initial relations are assumed to salisfy
r = Adx + o(dx), s < dx, and dx = o(s*/?). Then the probability distribution of
the size of the semijoin of R and S on attribute X, conditioned by the sizes r and s of
the initial relations, is asymptotically normal. The asymptotic mean is p = rs/dx. If
the distribution on attribute Y belongs to class (Z), the asymptotic variance is equal
to 0% = (1 — s/dx)rs/dx. If the distribution on attribute Y belongs to class (G), the
asymptotic variance becomes o = s(1 — s/dx)og for a positive constant oj.

COROLLARY 5. Let R[X,Y] be a relation with key Y, and S[X, U] a relation with a
key X. We assume that the probability distribution on Dx is uniform. The probability
distributions on Dy and Dy are arbitrary. The sizes r and s of the initial relations are
assumed to satisfy r = Adx +o(dx), s < dx, and dx = o(s*/2). Then the probability
distribution of the size of the semijoin of R and S on attribute X, conditioned by the
sizes 7 = Adx (1 + o(1)) of R and s of S, is asymptotically normal. The asymptotic
mean and variance are given by p = rs/dx and 0® = (1 — s/dx)rs/dx.

Once again, a comparison of Corollaries 4 and 5 shows that the existence of a
key, or a probability distribution of class (Z), on attribute ¥ have no influence on the
asymptotic behaviour of the semijoin size.

In the case where both relations R and S have attribute X for key, we have the
following result, which is proved in §6.5.

THEOREM 5. Let R and S be two free relations, of sizes r and s. We assume
that the probability distribution on the set of size d of possible tuples is uniform. We
take r = Ad(1+ o(1)) and s = Bd(1 + o(1)), where A and B are constants in |0, 1[.
Then the probability distribution of the size of the intersection of R and S, conditioned
by the sizes T and s of the initial relations, is asymptotically normal. The mean and
variance are given by p = rs/d and 0% = rs/d(1 — r/d)(1 — s/d); their asymptotic
values are, respectively, ABd and AB(1 — A)(1 — B)d.
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6. Proofs of theorems.

6.1. Sketch of the proofs. Theorems 1, 3-5 have a common flavor: We are
interested in a function ®(z,y) or ®(x,y, z), which defines a conditional probability
distribution, and we want to know if this distribution has a limit when some param-
eters r and s go to infinity. Moreover, the function ® is of the kind #?, where the
exponent d also grows to infinity. The generating function for the conditional distri-
bution is f(z) = [y"]®(z,y)/[y"]®(1,y) or f(z) = [v"2°1®(z, y, 2)/[y"2*] @ (1, y, z).

Let us sketch the method that we use to study the limit of the distribution defined
by f(z) when function ® is bivariate. When the initial function is ®(x, v, z), we restrict
ourselves in this paper to cases where at least one of the coefficients [y"]®(z,y, 2)
or [2°]®(z,y,z) can be computed by the binomial formula, and the evaluation of a
limiting distribution defined by function f(z) proceeds in a similar way.

We first evaluate 9(z) = [y"]®(z,y), for z real. By Cauchy’s formula for an
analytic function, ¥(z) can be written as an integral on a closed contour around the
origin as follows:

® Vo) = g § B(a)

In all the cases that we consider in this paper, the function ® has no singularity, and
we use the saddlepoint method (3], [6], [14] to approximate this integral. We take for
integration path in (2) a circle y = p(z)e', centered at the origin, whose radius p(z)
is chosen in such a way that only a small part of the circle contributes to the integral
and that the integral on the rest of the circle just gives an error term. The point p(x)
Is a saddlepoint; it is defined from the function h(z,y) = log ®(z,y) — (r+1)logy as
the solution of the equation (0h/By)(z,y) = 0. The saddlepoint approximation then
gives the following approximate value of P(z):

eh(@,p(2))
v 210%h/0y*(z, p())

We next show the pointwise convergence of the Laplace transform e'#/74p(e~t/)/
¥(1) of the normalized random variable associated with the probability generating
function f(z) = ¢(z)/4(1), toward et*/ 2, for suitably chosen values of # and o and
for any fixed ¢ in the interval [0, +o0[. Classical results on the convergence of prob-
ability distributions (see, for example, 7, Chap. XIII, Thm. 2]) allow us to conclude
to the convergence of the probability distribution defined by f(z) toward a normal
distribution of mean ;& and variance o2.

We give in some detail the proof of Theorem 1 and, more quickly, the proofs of
Theorems 3-5 and of the corollaries.

¥(z) (1+0(1)).

6.2. Proof of Theorem 1 for projections. We recall that the bivariate func-
tion we consider is ®(z,y) = (1 — = + zA(y))?, with Property P of §3.4 satisfied: It
is entire and not affine, with positive coefficients, such that A(0) = 1, and such that
there exists no entire function A and integer m > 2 with A(y) = A(y™). Let us define

(3) h(z,y) = dlog(l — z + zA(y)) — (r+1)logy.

Equation (2) becomes

1
P(z) = [y"]®(z,y) = %}(eh(“"y)dy.
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6.2.1. Choice of the integration contour. The equation in y defining the
saddlepoint is 9h/0y(z,y) = 0, which can be rewritten as

:cy/\f(y) _ ek
) l—z+zXy) d °

The solution of this equation in y is a function of z, r, and d. We must take = equal
to 1, or near 1: z = e~ */?_ for fixed ¢ and large 0. We solve the equation for z = 1,
then give an approximate solution for = close to and smaller than 1. For = = 1, (4)
becomes

yNy) _r+1
Aly) d

We first show that (5) has a unique real positive solution py.

Lemma A of §3.4 and the fact that g(0) = 0 together show that py exists and
is unique if and only if limy,— ;. ¥\ (y)/A(y) > (r + 1)/d, which can be simplified
into a condition independent of d and r, below (we recall that d,7 — 400 and that
r = Ad+ o(d)):

(5)

Y\ ()

A.
= A1)

(6)
We henceforth assume that the condition (6) holds: For r and d large enough, (5)
has a unique real positive solution py. We look for a solution of (4) under the form
p(z) = (1 + u)pg with u=0(1), for z =1+¢ and € = o(1), with £ < 0.
Functions A and A can be expanded near the origin as follows:

A@)=A@®+“X@®%+IXML
N () = X (po) +uX" (po)po + O(w?).

We rewrite (4) as zy)\ (y)/(1 —z + zA(y)) = g(po) then plug the expansions of A and
A into it. In terms of the function

D(y) = Ay)(N () + 37" (1)) — X" (v),

this gives the following equation on u and € = =z — 1:
X (po)e + D(po)u + O(u?) + O(eu) = 0.

The coefficient of u in this equation is D(pg) > 0, and we can compute the following
approximate value of wu:

(7) plz) = (14 u)po; u= —ME+O(52).
D(po)

6.2.2. Approximation of ¢ (z). In this section, z is fixed and real near 1. As
we will need, in §6.2.3, to take z = ¢~/ for ¢t > 0 and o > 0, we can restrict ourselves
to z < 1. We also abbreviate 92h/0y? into A in this section; this should cause no
ambiguity.

We choose for integration contour in the integral (2) a circle with radius p(z):

1 i6 .
w(m) el %eh(z‘y)dy — i/‘ eh(m,p(:&‘)e )d(pm)eie)‘
oe|—m,+m)

T %m Qi




NORMAL LIMITING DISTRIBUTIONS 235

We divide this integral in two parts: I; is the part of the integral dealing with a
restricted piece of the path near point p(z) and will give the main term (11); the
complement I will give an exponentially smaller term (12). We first choose o €]0, il
(we see in the following the conditions that o must satisfy), then we formally define
I]_ and .[2 by
L = i eh(m'p(m)ew)d(p(m)ew),
227'(' 96}—&,+a[
1 i0 :
Ig = — eh(m,p(z)e )ﬂ‘. P\ 819 3
7 (p(z)e™)

We have that 9(z) = I + I», and our goal is to prove that we can find a value of o
such that

eh(zo(z))
(8) le) = —— (1 +o(1)).
2rh (z, p(z))

Evaluation of I;. We can always assume that x varies near 1 in such a way that
p(x) belongs to a compact set near py. Actually, pg itself is a function of d and r but
can be restricted to a compact neighbourhood of g=1(A) (which is a constant). This
means that we can restrict p(z) to a compact interval around g~ (A) independently
of r, d, and 2. This will henceforth be used implicitly to prove that the error terms
that we consider are uniform with respect to r, d, and z. We abbreviate p(z) into p
for the evaluation of I7; again, this should cause no confusion. The evaluation of I;
is similar to the corresponding ones in the proofs of Theorems 3 and 4. This leads us
to state the following lemma, which we use again in the next proofs.

LEMMA B. Let hq(z,y) be a function that depends on a parameter d, defined and
twice differentiable for (z,y) in a compact neighbourhood of the point (1, pg), where
po satisfies the equation Ohy/dy(1, po) = 0. We assume furthermore that, as d varies,
po stays in a compact subset of |0, +oco[. Define p as the solution (dependent on = and
d) of Ohq/dy(z, p) = 0. Assume that

o 82hq/0y*(1, po) is of order ezactly d;

o for = near 1, 0%*ha/dy*(z, p) = 8%ha/y>(1, po)(1 + o(1)) with an error term
uniform in © and independent of d;

o the function 6 — hy(z, pe’®) has a Taylor expansion near zero satisfying

ha(@, pe") = ha(z, p) + Z-(e = 1)20%ha/ P (z, p) + O(d6°),

with the O() term such that the implied constant can be chosen independently of x
and d.

Then there ezist constants ag > 0, g, and 71 such that, for any a €]0, ag|, and
with implied constants in the O() terms independent of z and d,

1 gha(z,p)

Enl ehd(x,pew)d peiﬂ) —
2im B gt ( \/271'62hd/3y2($,p)

- (1+0(a*Vde %) 1 O(e %) 1 O(dad)).

The proof of Lemma B is given in Appendix A. We now check that its assumptions
are satisfied for the function & defined by (3). The function h(z, pe'?) can be expanded
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in the variable @ around the origin as follows:

(©) h(, pe'®) = h(z, ) + p(e" — 1)0h/By(z, p)
+2-(e7 — 12K (2, 0) + O(IR” [|(e = 1)°).

Define ¢(z,y) = 1—z+zA(y). Definition (3) gives k" (z,y) = d-8*(log ¢)/6y2($, y)+
(r+1)/y?. For z and y near 1 and p, respectively, we have that 6°(log ¢)/0y%(z,y) =
8%(log ¢)/0y*(1, po) + O(z — 1) + O(y — po) and 1/y* = 1/p§ + O(y — po). This and
the fact that r = O(d) give h” (z,y) = I’ (1 po) +dO0(z—1)+d Oy — po). We next
check that k" (1, po) has order exactly d: h'(1,p0) = d g'(po)/po. Hence we can factor
it out of the expression of A" (z,v), and we get that

(10) h'(z,y) =h"(1,p0)(1 + Oz — 1) + Oy — po)).

The O() terms in this expansion are mdependent of r and d. We deduce from it that,
for z close to 1 and y = p(z) = p, k' (z,p) = h" (1,p0)(1 + o(1)). The error term in
this relation is uniform for z — 1 and r,d — +co. A similar argument shows that the
term ||k || is actually O(d). We also have, by definition of p, that 9h/dy(z, p) = 0.
Equation (9) then becomes

. 2 . "
h(z,pe?) = hi, p) + £-(e* — 1)°K" (2, p) + O(d8").

Lemma B finally gives the following approximation of I;:

h(z,p) g 4
(11) L= 2 (1+0(a®Vde ™% )0 (e~ 14"} + O(da)).
2rh’ (z, p)

Upper bound on I3. We recall that
1

12 et eh(m’p(w)ew)d P I)Biﬁ .
27 Ja<igl<n heeed

We extract from the integral the main term of I;: e™®*(); this gives
h(z,p(z)) )
gy — BEE IR f ek, (0)"d6,
2 a<|f|<r

with k. (8) = (1 —z+zA(p(x)e?)) /(1 — =+ zA(p(x))). We now want an upper bound
on |k.(@)|, for |0| € [a,7]. The term 1 — z is o(1), of smaller order than the term
Alp(z)), and we get that

1 -z +z|A(p(z)e”)|
1—z+zA(p(z))

kz(0)| <

Lemma C, below (proved in Appendix B), gives a bound on |A(p(z)e®)|, which, in
turn, gives an inequality on |k, (8)|: |k-(8)] < 1—C1a?, for a strictly positive constant
C1, independent of r, d, x, and . We finally get that

|I| < p(z)e?@PEN (1 — Cra?)? = h@PEN (e~ Crdo?),
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which gives

eh(zp(e))

VI (2, p(x))

LemMA C. Let A be a function satisfying Property P of §3.4, and « €]0,7[. Let
y vary in a compact subset of |0, +oo[. Then there ezists a constant C > 0 such that,
for all 8 satisfying o < |8| < =, and for all y in the compact subset, the following
inequality holds:

(12) |I| = O(Vd e~ Crde’y.

IA(ye™)] < My)(1 — Ca?).

Choice of oe. We obtain the following approximation of 1 (x):

h(z,p(z)) 5 2 2
D(@) = —ee (14019 )+ O(VdeC1%") 1 O (a2 Vde~ 9" ) +-0(da?)).

verh' (z, p(z))

Approximation (8) holds if we can choose « such that the error terms are negligible.
For d — +oc0, this is a consequence of

da?
logd

For a = (logd)/+/d, it is easy to check that da?/logd = logd and do® = log® d/v/d =
o(1), and we have that

— +00, de® = 0.

eh(zp(2)

V2mh (z, p(x))

6.2.3. Convergence of the normalized Laplace transform. We show here
that we can choose u and ¢ in such a way that the function et“/?f(e~t/?) =
eth/7h(e=t/7) /(1) converges toward e!” /2 when d — +o00 and for every ¢ > 0. Taking
the logarithm, we must prove the convergence of Z(t) = tu/o + log(y(e™t/7) /2(1))
toward ¢2/2.

Equation (8) shows that

g (142)) = bz, pa) ) = hl1, ) — 3 log (M) +o(1),

P(z) = (1+0(1)).

¥(1) h' (1, po)

which gives

(13) 2(6) = tuefor + Bh(e=/7, p(e=%)) + o(1),
with

— h(zy) — 1 M)
(14) 5}1(.’13,’9') = h’( =y) h(lapﬂ) 21 g hn(l,po)-

We formerly proved in (10) that A’ can be expanded near the point (1, pp),

"

R (z,y) =R (1,p0)(1 + O(z — 1) + O(y — po)). This shows that, for z = 1 +¢,

log (M) = Ofe).

h” (L PD)
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Evaluation of h(z,p(z)) — h(1,po). The function h can be expanded near the
point (1, pg) as follows:

Oh dh
h(z,y) = h(1, po) + (z — 1)6_:1:(1’ po) + (y — po)@(l,po)
1 ,8%h 8%h 1 ,0%h
+§($ —1) 51_—2(1,100) +ig— L)y ~ Po)m(la po) + E(y — po) 37’2(1”00)

+0(d(z — 1)) + O(d(y — po)°).

For z — 1 = ¢ and y — pg = upp, and substituting the values of the derivatives of h at
point (1, pp), we get that

Apo) =1 d (Alpo) —1)% ,

h(l4+e,(1+u == Bl +d E— =" 3
( ( )pO) ( PO) )\(pg) 9 )\2(190)
/\,(PD) d . 2 3
+d o) eupo+ 3 9 (po)u®po + O(de?).

We now use the value of u computed in (7): w = —eX (po)/D(po)+O(e?), which gives

d
h(1+ &, po(1 + u)) = (1, po) + daye — 5&252 + O(de®).
The coefficients oy and as in this formula are defined by

A 2(po)po

2
RPN L.
YT A2 (po) D(po)

a=1-— ,
: Alpo)

The values of h and " in (14) are now replaced and we get that
d o 3
(15) Sh(1l+¢e,(1+¢£)pg) = daye — 5Q2e + O(de™) 4+ O(e).

We next define z = e™%7 = 1 — t/o +t2/20% + O(t*/0?), ie., e = —t/o + t?/20°% +
O(t%/c?). Equations (13) and (15) show that

2(t) = (- dal)g +d(ay — az)i’g27 i) (;i) +0 (;) +o(1).

Determination of the mean p and the variance o. Let us define u = day and
0? = d(a; — az). They can be written as

- dm e Alpo) =1 A"2(00)p0
Alpo) X(p)  X(po)D(po) )

Here pg is equal to g~*(r+1)/d and has for asymptotic value the solution of g(y) = A.
Hence the mean and variance are asymptotically equal, respectively, to dug and doZ,
for po and o defined in function of p = g~*(A) as follows:

_Ap) -1

- Ap)—=1  pX*(p)
Ap)

A(p)  Ap)D(p)

2 _
0 =
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We now check that o7 is strictly positive. In terms of the functions 91(y) = v\ (v)/ (Ay)
— 1) and g(y) = yA (y)/A(y), we have that oF = (A(p) — 1)2,(p)/(A3(0)g (). By
an argument similar to that used in §3.4 to prove that g is an increasing function
(see Lemma A and its proof), we can show that the value gi (p) is positive, which
in turn shows that ¢2 > 0. The error terms O(d/c®) and O(1/0) both become
O(1/vd) = o(1), and we finally have that Z(¢) = t2/2 4 o(1), which ends the proof of
Theorem 1. 0

6.2.4. Proof of Corollary 1. Checking that the function Ady () = [T1<icq, (1+
Di,dy Y) satisfies Property P presents no difficulty. If the size dy of Dy is fixed, Corol-
lary 1 is a direct consequence of Theorem 1. If dy grows to infinity independently of
dx and r, we must adjust the proof as indicated below. We recall that we assume the
independence of dx and dy-.

We work with a sequence of functions g, (y) = [i<ica, (1 + pig, y). When the
probability distribution on attribute Y is in class (Z) or (G), this sequence converges
normally toward a function ¢(y) for any y in a compact subset of the complex plane
and for dy — +o0. The saddlepoint py for z = 1 has a finite, nonnull limit p when
r,dx,dy — +oo. This limit p also satisfies the limiting equation tt,o’(t)/go(t) = A.
We solve the equation, giving the general saddlepoint p(z) exactly as in §6.2.1. The
solution now also depends on dy, and it is important to note that p(z) can be restricted
to a compact neighbourhood of p for z — 1 and r,dx,dy — +o0o. The rest of the
proof is then the same as the corresponding part of the proof of Theorem 1, with
uniform error terms in our approximations.

When the distribution on attribute Y belongs to class (G), the inequality po >
1 - e is equivalent to e* < p(p) or (by g(p) = A) to g(p) < logé(p). As g(y) —
y(log ¢)'(y) and log p(y) = i1 l0g(1+p;y), we have that g(y) = > is1 Piy/ (1+piy).
We can then rewrite the former inequality as >is1(log(1+ pip) — pip/(1 +pip)) > 0.
The function ¢ — log(1+t) — t/(1 4 t) is positive for all ¢ €]0, +o0[, and each of the
terms of the global inequality is positive, which proves the lower bound on pq. O

6.3. Proof of Theorem 3 for semijoins: X key of R. Theorem 3 is an
extension of Theorem 1, when we multiply the function ®(z,y) = (1 —z+zA(y))? by
a term ¢(z) = A(2)%™". The proof of Theorem 3 is similar to that of Theorem 1, and
we mainly indicate the points where it differs.

The coefficient [y"]®(z,y, 2) is (d)(l —z4+zA(2))"A(2)*". Let us define

T

Yl = [yrzs]@(m’%z)/(f) - 271? fﬁh(m’z)dz,
with
hz,z) = rlog(1 — & + 2A(2)) + (d — 7) log A(2) — (s + 1) log =.

6.3.1. Evaluation of the saddlepoint z(z). We have that h(1,z) = dlog M(z)—
(s + 1)logz. Define g(z) = zX (2)/M(z); the equation Oh/0z(1,z) = 0 becomes
g(z) = (s +1)/d. We assume that limg g 400(s + 1)/d exists and is equal to B.
As function )\ satisfies Property P of §3.4, Lemma A of that section shows that
the equation g(2) = (s + 1)/d has a unique real positive solution pg if and only if
lim; .o g(2) > B. We then solve the equation Oh/02(1,2) = 0, for = 1 + ¢ and
z = (1+u)py. We first rewrite it into

r{z—1) _s+1
(H d(l—$+:c/\(z)))g(z) T Tad
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Using expansions of the functions A and g near pg, we get the approximate equation

rg(po)
dA(po)

We solve it and get that

e+ g’(pg)upg +0 (gsz) +0 (geu) +0(u?) = 0.

_ rA (po)
dX2(po)g’ (po)

We need the values of the derivatives of function h near point (1, po) in §§6.3.2
and 6.3.3, so we give them below: dh/8z(1,po) = 0, the derivatives of order 3 of h
are O(d), and

%(1,.00) =r (1 - )\(1,0)) 2 %(1”00) - (1 - x(i?—o))z,

0%h X (po) 8*h g (po)
—(1 = ; — (1,pp) =d =——.
Bmaz( :PO) T )\z(po) 822 ( pD) pO

6.3.2. Evaluation of 1(z). In the formula ¥ (z) = (1/2i7) § e@2) dz, we take
for integration path a circle centered at the origin and with radius z(z) = (1 + u)po;
with u defined by (16). We choose a €]0, [ and divide the integral in two parts:
I, = (1/2im) f\ﬂlia eM®*)dz and Ir = (1/2irm) faSIBISW e™*2)dz, Lemma B of §6.2.2
gives an approximation of I; as follows:

eh’(m’z(m)) da? qa3
= — (1+0(c®Vde %) + O(e™ M) + O(da®)).
2rh. s (2, #(x))

(16) u=—cae(l+0(e)), «

Lemma C of §6.2.2 then gives an upper bound on IA(z(z)e®)| for a < |0] < m; it is
easy to show from it that

h(z,z(z))
B=—r g,
hoa(z, z(z))
By choosing a = (logd)/ v/d, we obtain that

h(@.2(2))
(z) = e (1 +0(1)).
h 2 (x, z(x))
6.3.3. Laplace transform and determination of moments. Always follow-
ing the same path as in the proof of Theorem 1, we now compute

P(z) B 1. 82h/02%(z, 2(z))

lOg 1[/(1) - h(Z,Z(I)} h‘(11 pU) - 9 log 62h/8z2(1,p0)
It is easy to check that log(8%h/822(z, 2(z))/0%h/02%(L, po)) is O(z — 1). We then
expand the function h(z, z(z)) near the point (1, po) as follows:

@, 2(2)) = (L, p0) + (& = Do 4+ (2(2) — po) gy + 55— 1

2 2
o~ 1(al) = o) oo+ 2(ela) — ) 5

+0(d(z — 1)%) + O(d(x(z) - po)?).

+o(1).

2
oz2
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The values of the derivatives of h in this expansion are taken at point (1, pg). For
z=1+¢and z(z) = (1+u)po (see (16)), we get that

Oh 1 (9%h &%h 9. 90°B\ » 3
h(z,z(z)) — h(1, po) = g + 5 (5? — 2(1‘00@ +a poéﬁ) £ 4+ O(de”).
Define pu = 0h/0z and 0% = u+ 8°h/0x? — 2apg0%h /002 + 02 pod2h/Dz%; the values
of the derivatives in y and o? are taken at point (1, py). We have that

P(z)
¥(1)

=p(z—1)+ %(02 — )z —1)*+ O(d(z - 1)®) + O(z — 1).

log
For 5,dx — +o00, we have that u = rug(1 4+ o(1)) and 02 = ro3(1 + o(1)), with the
constants 1o and o defined in function of p = g~1(B) as follows:

1 2 _Ap)—1 r pA?(p)

Mﬂzl_m’ oy = A2(p) EX*(;O)Q'(P)'

We again note that o3 is strictly positive: o > (A(p) —1)/A%(p) —pA2(0)/A%(p)d (p),
and we proved in §6.2.3 that this term is strictly positive. We finally get that tu/o +
log ¢(e=7) /1p(1) = t2/2 + O(d/r3/2) + O(1/r) + o(1). The error term becomes o(1)
for 7 such that r — 400 and r3/2/d — +oo0. 0

6.3.4. Proofs of Corollaries 2 and 3. The proof of Corollary 2 is adapted from
the proof of Theorem 3, as Corollary 1 was obtained from Theorem 1 in §6.2.4: Take a
sequence of functions Ay, (t) and note that z(z) can be restricted to a compact subset
near g~ '(B). Corollary 3 is simply Theorem 3 applied to the function Alz) = e,

6.4. Proof of Theorem 4 for semijoins: X key of S. The generating func-
tion ®(z,y, z) has the following general form:

O(z,y,2) = (A(y) + zA(zy))%.

We first extract the coefficient of 2% in ®(z, v, z) as follows:

3 a s s
10(,0,2) = () M) 2 )
Cauchy’s formula then gives the following coefficient of y":

L 1 .
P(z) = @[yrz 1®(z,y,2) = %feh( Wy,

with
h(z,y) = (d — s)log A(y) + slog A(zy) — (r+1)logy.

Here again, we choose for integration path a circle centered at the origin and that has
for radius the root y(z) of equation 8h/dy(z,y) = 0.
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6.4.1. Evaluation of the saddlepoint y(z). For z = 1, y(z) is solution of
dh/dy(1,y) = 0. We have that h(1,y) = dlog A(y) — (r + 1) logy. This gives

(17) vy -

Define again g(y) = yA (y)/A(y). Equation (17) can be written as g(y) = (r + 1)/d.
As function X satisfies Property P, the equation g(y) = (r+1)/d has a unique solution
po if and only if (cf. Lemma A in §3.4)
Af
li — A.
yilfmy A ) >

We then solve (17) for z = 1+ ¢ and y(z) = (1 +u)po. They satisfy the equation
(18) (d—s)g(y) + s g(zy) — (r+1) =0.
Function g can be expanded near py, as follows:

9(y) = 9(po) + (¥ — po)g (po) + O(llg" 1|(y — po)?)-

The error term is simply O((y — po)?), and we have for y = (1 4+ u)pg that

9(y) = g(po) + g (po)upo + O(u?).

As zy = (1 4+ ¢+ u + eu)py, we get that

g(zy) = g(po) + g (po) (e + u)po + O(e*) + O(u?).

Equation (18) can be simplified by using r +1 = dg(po), and we get the following
approximate equation between ¢ and wu:

du + se + O(du®) + O(se?) = 0.

We have that s < d, and we can solve this equation in u. This gives the following
approximate value of the saddlepoint for x = 1+ &:

(19) y(@)=(1+up, u=—=e(l+0()).

We indicate below the values of derivatives of h that we need later: h/dy(1, po) =0,
the derivatives of order 3 of h near (1, py) are O(d), and

2 ' ! r
Lo =s0(0),  n(1,p0) = 5(3) (b0)eh = (5 (b0)o0 — g(ow);

0%h ' 8*h g (po)
5$3y(1=f70) =354 (PU): a—yg(l,Po) = dT.

6.4.2. Approximation of 1)(z). We take here z fixed, real, and smaller than 1.
The function ¥(z) = [y"2°]|®(z,y, z)/ (‘:) can be written as an integral along a circle
of center the origin and radius y(z) = (1 + u)pp, below:

L h(z,y) ! h( e i0
= — Ty dy = — z,y(z)e )d N,
¥(=) zz'wj{ € Y= % Jociomiin] (y(z)e™)
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For a in ]0, 7[, we define

1 i0 ,
Il = eh(r,y(z)e )d(y(m 616‘ "
2im fe]—a,+af ) )

1 h{z,y(z)e'?) 17
= — e\ d(y(x)e™).
%7 o1 (y(z)e™)

Evaluation of I,. We check that the assumptions of Lemma B of §6.2.2 are
satisfied: The conditions on the derivatives of h hold, and h(z,y) has the following
xpansion for y near the saddlepoint y(z):

2
Az, y) = h(z,9(@) + (g — y(mngg«c, y(@)) +1/2 (y - y(mnzg—;;(m,y(m»

+O(IK"[|(y — y(z))?).

This gives

2(z,y(z)) + O(d#?).

e, y(@)e) = (e, (@) + L0 (e — 128

Lemma B then proves that
Bh(x'y(m))

20) L= . (14 0(a®Vde™%%) 1 O(e=1%%) + O(da®)).
27Th'y2 (5'3: y(aj))

Upper bound on Is. We have that

ekt M@\ (A@y@e®)\" i
T fagm'g( A(y(m))) (A(y(wn ) ‘ @

Lemma C in §6.2.2 shows that there exists a suitable constant « > 0 such that
he following inequalities hold:

Ay(z)e?)] < Ay(2)e ™, [Azy(e)e®)| < May(z))e ™.
As a consequence,

10 X 0
/ )\('y(a:)e )ld—s . ‘ (CL‘y{E‘}E )‘s . do < 27[_8—-10!012-
a<|0|<x

Ay(z)) Ay(z))
We get that
h(z.u(2))

21) I = O(Vde 4%,
27rh;2 (z,y(x))

Choice of c. As usual, we choose a = (log d)/+/d; the error terms in (20) and (21)
hen become o(1) for r,d — 4oc0. Hence

ehlzu(z))

27rh;2 (z,y(z))

5
£
I

(14 0(1)).
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6.4.3. Convergence of the Laplace transform. We show here that et#/¢
P(e~t/7) /1(1) converges toward e’ */2 for d — +oo and for all fixed real positive t.
Its logarithm is 2(t) = tu/o + log(s(e */7)/1(1)). For z = 1+¢ and y = (1 + u)po,
and using the information on the order of the derivatives of h, we get that

ah oh 10°%h
= B{T,’ — 1 1 .
h(z,y) = h(1,p0) + 5-(1, po)e + ay( s po)upo + 555 (1, po)e

82h (1 ) +182h

We substitute —se/d - (1 + O(g)) for u (see (19)), and the values computed above for
the derivatives of h, and we get that .

(1, po)u?pg + O(du®) + O(de?).

8 5 '
AL+ &, po(1 +u)) = h(L, po) = sg(po)e + 5 (1= 5) g (po)po — 9(p0) ) e* + O(de?).
We have, as usual, that (82h/8y%(x, po(x)))/(8%h/0y?(1, po)) = O(e). For z = et/
we then substitute —t/c +t2/20% + O(1/0?) for € = z — 1, and we obtain that

E(t) = (u— SQ(PO))E +s(1 - S/d)gf(pf’)po g+ ( ) e (U)

Define u = sg(p) = As =~ rs/d and o% = s(1 — s/d)pg (p), with p = g~1(A). The
conditions on s and d show that the error terms are o(1) and we have that
2(t) — /2. 0

6.4.4. Proofs of Corollaries 4 and 5. The proof of Corollary 4 is adapted from

that of Theorem 4, as indicated in §6.2.4 for Corollary 1 and Theorem 1. Corollary 5
is an instance of Theorem 4 in the case when A(y) = e¥.

6.5. Proof of Theorem 5. Theorem 5 cannot be deduced from either The-
orem 3 or Theorem 4: The functions Ar(t) and Ag(f) are both equal to 1 + t.
However, the function ®(z,y,2) is simple enough that it is possible to write a di-
rect proof. We can express [y"z°]®(z,y,2) as a sum of binomial coefficients: For
®(z,y,2) = (1 +y + z + zyz)?, we have that

vasens- T ()

1+j=s

We can then try a direct study based on properties of the binomial coefficients. We
do not follow this idea, but rather indicate briefly how Theorem 5 can be proved by
our approach.

We compute [y"]®, then apply Cauchy’s formula to get [y"2°]® as follows:

d
et =L o
29

with h(z,z) = (d — r)log(1+ z) + rlog(1 +zz) — (s + 1) log 2.
The saddlepoint for z = 1 is pg = (s + 1)/(d — s —1). We must assume that
s = Bd + o(d) if we want pg to stay in a compact subset of |0, +oo[. For z =1 +¢,
the saddlepoint is z(z) = po(1 — re/d + O(re/d)).
As usual, the computation of the integral f[_m-m} eh(w’z(m)ezsd(z(m)ew) is per-

formed in two parts. The computation of the main part, on interval [—a, 40, is
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straightforward, and we do not detail it. The upper bound on the remainder of the
integral once again relies on the bound on a function of 8, for a < |6] < 7. In the
present case, this function is simply (1 + z(z)e®)4-7(1 + zz(z)e®®)" /(1 + z(x))?, and
the desired inequality presents no difficulty. The evaluation of the normalized Laplace
transform and its convergence toward e*’/2 are then easily proved. O

Appendix A. Proof of Lemma B. We write A instead of ha, and h" instead
of 82hy/8y?. Let ap > 0 be such that the Taylor expansion of h is valid for 18] < ap.
Then, for any o < ayp, the assumptions on h show that

. h(z, ) "
i eh(z,pe‘“)d(peia) i (_ p)/ e(P?/2)(e~1)2h (m.p)+O(d83)d(pei9)
24 0€]—a,+af 2T Jig1<a
h(z, : "
o & (_ 7 / (P’ /2)(e*~1)*h (m'p)d(,oew) (1+ O(da®)).
29w 18] <

Let us define J = fl9\<a e@*/2)-(e*-1)*h @P)d(pe'®). The integration path v — {l6] <
a} is part of a circle of radius p. We replace it by the path y; U+, U 7’1 defined as
follows: y1 = {y = p(1-v)—ipsina},y; = {y = p(1—v)+ipsina} for v € [0, 1—cos al,
and v; = {y = p +ipt}, for t € [~ sine, +sinal. See the figure below:

’

Y

T

Let J7, Ji, and J, be the integrals on 71,"/£, and yo: J=Jy+Jp + J{. We first show,
below, that the integrals J; and J; can be neglected as follows:

7 =/ W/2)w=0)"h" @p) g,
T

0 o G -
= —pf e(ﬂ /2)(v+isina) h (I’p)d'l)
1

—COs o

l—cosa 7
_ p/ (P /D (wisin)* R (1,00)(140(1)) g,
0
Hence |J;] < pf(}l_cosaem{PZ/?(vHsina)zh"(l,po)(l-ﬁ-a(l))}dv_
The former integral is O(fol_cosa e’ /2 (v*~sin® a)h (Lro) dy), and

l—cosa o o hu 5 b7 g l—cosa 3 2h,”
/ (P /2) (v —sin® )R (1,p0) gy — o=(p2/2)h" (1,p0) sin af @ 120h (1,00) g,
0 0

We also have that fol_cu”e"’i/z'“zh (poddy < (1 — cos a)ep2/2'h (Lpo)(1-cose)® Ao

h (1,pg) = ©(d), this gives for a suitable constant Y >0 J; = 0(026*7“‘1“2). The
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majoration of Ji is done in the same way. We now show that Jy gives the main term
of J, as follows:

Ty = / /2 w=-0*h @0) g
T2

==iip f ~(2127h ,0) gy
|t|<sin o

eV 2y,

i
VR (z,p) /IvSp\/h" (z,p) sin

This last integral is equal to

i "
./ e~ /2dy — ] e~ 2dy = V21 + O(e™ /I (@) sin? a).
e [v|>py/R" (z,p) sin

This gives J = iy/2w /R (z,p)(1 + O(e~1%") 4+ O(a?Vde~14")), with 7o and 1
strictly positive constants; in particular, they are independent of 7 and d. We then
plug the approximation of J into the expression of the integral to get Lemma B. O

Appendix B. Proof of Lemma C. The main idea in proving Lemma C is
a classical one, namely, that the modulus of an analytical function with positive
coefficients on a circle of given radius y > 0 attains its maximum at point y and only
at that point, except when the function is actually a function of y™ for some positive
integer m

Ae™)| = 1D Aay™e™| < D Ay = A)-

n>0 n>0

We want to extend it to get a uniform upper bound |A(yei)| < A(y)(1 — Ca?), for
a < |6] < 7. We note that, if A(y) = A(y?), for example, |A(ye*)| would attain its
maximum at both points y and ye'™, and it would not be possible to get an inequality
IA(ye'®)| < A(y)(1 —Ca?) on most of the circle of radius y, excluding only an arc near
y. We first give the proof of Lemma C in a simple case, then the general argument.

Define A, = [y"]A(y) for n > 0. From Property P of §3.4, we know that Ay = 1.
We first assume that A; # 0. We rewrite A(ye®) as

Aye®) = (14 Mye®) + (Mye®?) — 1 — Mye).
The triangular inequality gives
IMwe®)| < |1+ Mye?| + |A(ye®) — 1 - Aye™|.

We also have that A(ye®) — 1 — Mye® =3 ., A\ay"e™?. As the coefficients A, are
real and positive, we get that -

(22) IAye®) — 1= Mye®| <D~ Aay™ = Ay) — (1+ May).

n>2

We can also write

; by
114+ Aye®|2 = (1+ Ary)? (1 s 2(1—+%y)2(1 — cos 9)) .
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This can be simplified by using the fact that /T —¢ < 1 — t/2 for t € [0,1]; we get
that

i A1y
1+ Mye?| < (1+ A (1—————1—0059 )
| 1Y | = ( 1y) (1 +)\1y)2( )
Now, for |0] in the interval [a, 7], we have that cos# < cosa; this gives the follow-
ing inequality valid on [a, ], for a strictly positive constant Cy that can be chosen
independent of y and of « (remember that y varies in a compact subset of 10, +o0|):

(23) 1+ Mye®| <14 My — Coa.
Combined with bound (22), this gives, in turn, the following bound on |A(ye®)|:
IMye)| < Ay) — Coa® < A(y)(1 - Co?).

The term C' in this last inequality is positive and can again be chosen so as to be
independent of y.

When the term A; is equal to zero, inequality (23) does not hold, and the former
proof must be adapted as follows. By Property P, there exists a finite set of indices
K such that, for all k € K, A, # 0, and that GCD(k|k € K) = 1. Hence there exist
relative numbers a), such that )7, k ax = 1. Let us define ¢ = 1/(2 35 lak|); we can
assume that a is close enough to zero for the inequality ca: < 7 to hold. Let 8 € [, 7]
(the case where 8 belongs to [—m, —a] is symmetrical). Then § = > akkd, and we
can show that there is at least one indice k¥ = k(f) in K such that |kO[27]| > cau.
Assume that it is not the case; then each of the 7, = kf[2n] satisfies k| < ca; hence
101 = | 2o awme] < X0, lawme] < (O}, lak|)ee and |8] < /2, which does not hold. We
now decompose A(ye') according to the indice k = k(8) as follows:

Aye®) = (Mye®) — 1 — ApyFet®™®) + (1 + AeyyF ety .
Hence
IA(we)| < Aly) —1— Ay + |1 + Akyte?),

We have that

i : Aey®
11+ Xey®e™| < (1 + My®) (l — kY 52 (1—cos kﬂ)) .

(1+ Ary
As k6[2m] is at a distance at least ca from 0, we can write

Ak

i@ & N e el
) < Aw) - 24

(1 — cosca).
To get a bound independent of §, we must remove the dependency of the indice k
on #. This can be done by noting that, as y belongs to a compact set of the reals,
the function a(y) = min{M\y* : k € K } is bounded away from zero. This shows
the existence of a constant C, independent of 6, such that, for all relevant y and 4,
Ae®)| £AB)(1 - Ca?). 1

We should point out that, although this is ruled out by our assumptions, there
is no difficulty in getting a bound similar to that of Lemma C when function A(t) is
affine, of the form Ay + A;¢, with positive coefficients Ao and A;. The key condition
of our proof is the positivity of the coefficients.



248 DANIELE GARDY

Acknowledgments. The author thanks P. Flajolet for many stimulating discussions
on asymptotic distributions, R. Schott for carefully reading a preliminary version of
this paper, and an anonymous referee for suggestions that led to a clarification of the
original paper, most notably a simpler proof of Lemma C.

REFERENCES

[1] L. AMMANN, Some limit theorems for clustered occupancy models, J. Appl. Probab., 20 (1983),
pp. 788-802.
E. BENDER, Central and local limit theorems applied to asymptotic enumeration, J. Combin.
Theory (A), 15 (1973), pp. 91-111.
[3] N. BLEISTEIN AND R. HANDELSMAN, Asymptotic Expansions of Integrals, Dover, New York,
1986.
E. R. CANFIELD, Central and local limit theorems for the coefficients of polynomials of binomial
type, J. Combin. Theory (A), 23 (1977), pp. 275-290.
L. COMTET, Analyse combinatoire, Presses Universitaires de France, Paris, 1970.
[6] N. G. DEBRULIN, Asymptotic Methods in Analysis, Dover, New York, 1981.
[7] W. FELLER, An Introduction to Probability Theory and its Applications, Vol. 2, John Wiley,
New York, 1971.
[8] P. FLajoLET AND M. SoRiA, Gaussian limiting distributions for the number of components
in combinatorial structures, J. Combin. Theory (A), 53 (1990), pp. 165-182.
[9] D. GARDY, Bases de données, Allocations aléatoires: Quelques analyses de performances,
These d’Etat, Université de Paris-Sud, Paris, June 1989.
, Join sizes, urn models and normal limiting distributions, Tech. Report 600, Laboratoire
de Recherche en Informatique, Université de Paris-Sud, Paris, October 1990.
[11] D. Garpy AND C. PUECH, On the sizes of projections: A generating function approach, Inform.
Systems, 9 (1984), pp. 231-235.
, On the effect of join operations on relation sizes, ACM Trans. Database Systems, 14
(1989), pp. 574-603.
[13] B. GNEDENKO AND A. KOLMOGOROV, Limnit Distributions for Sums of Independent Random
Variables, Addison—Wesley, Reading, MA, 1954.
P. Henricl, Applied and Computational Analysis, Vol. 2, John Wiley, New York, 1977.
M. JARKE AND J. KocH, Query optimization in database systems, ACM Comput. Surveys, 16
(1984), pp. 111-152.
[16] N. JoHNsoN AND S. K0Tz, Urn Models and Their Application, John Wiley, New York, 1977.
\%
D

. KoLcHIN, B. SEVAST'YANOV, AND V. CHISTYAKOV, Random Allocations, John Wiley, New
York, 1978.
[18] D. MaIER, The Theory of Relational Databases, Computer Science Press, New York, 1983.
[19] M. V. ManNiNO, P. CHU, AND T. SAGER, Statistical profile estimation in database systems,
ACM Comput. Surveys, 20 (1988), pp. 191-221.
[20] J. ULLMAN, Principles of Database Systems, Computer Science Press, New York, 1980.




