
An urn model from learning theorySt�ephane BoucheronLaboratoire de Recherche en Informatiquecnrs ura 410 and Universit�e Paris-Sud, 91405 Orsay (France)Dani�ele GardyLaboratoire prism,cnrs ep 0083 and Universit�e de Versailles Saint-Quentin, 78035 Versailles (France)AbstractWe present an urn model that appears in the study of the performance of alearning process of symmetric functions. This model is a variation on the classicaloccupancy model, in which the balls are of two types (good and bad). We studythe cost of the learning process in the static and dynamic cases; we �nd gaussianlimiting distributions and processes.1 IntroductionFrom learning theory to urn problemsThe original motivation of this investigation came from Computational Learning The-ory [14]. During recent years, learning theory has paid a renewed attention to learningcurves. Those curves monitor the improvement of the performance of the learner as shegets more information from her environment. Investigations based on Statistical Physicstechniques [19] have portrayed a variety of classes of behaviors. Though those investiga-tions were concerned with rather simple systems like perceptrons, they had to resort toadvanced methods like replica calculus that still require foundational elaboration. Otheranalysis [12] used approximations to provide rigorous upper bounds. The results pre-sented in those papers are some kind of laws of large numbers, they provide informationon the average behavior of large systems, but they disregard the 
uctuations around theaverage behavior. Our intention was to focus our e�ort on highly simpli�ed problemsand to carry out the analysis of the 
uctuations around that behavior after appropriatenormalization. It turns out that even for outrageously simpli�ed learning problems thisis a non trivial task. 1



The learning-theoretic problem we investigated is pac-learning symmetric functions.Rather than de�ning pac-learning problem in general, we will describe precisely the is-sues raised by the determination of the learning curves de�ned by symmetric functionsunder various conditions. Boolean symmetric functions map bitvectors from f0; 1gn ontof0; 1g according to their Hamming weight (and, or, majority, parity are symmetricfunctions). The set of 2n+1 symmetric functions on n variables is denoted Gn. Symmetricfunctions partition the elements of f0; 1gn according to their Hamming weight in n + 1classes (the Hamming weight of an element of f0; 1gn is its number of components equalto 1). f0; 1gn is provided with a probability law D. Learning is a game between twoparties : the learner L and an adversary A. The adversary chooses the target symmetricfunction f�. In the most primitive version, L draws elements according to D and asks Aabout the value of f on those elements. After k random drawings, L has the followingcouples : f(x1; f�(x1)) ; : : : (xk; f�(xk)g ;de�ning the sample S. Using that sample, L may formulate some hypothesis on f�.L draws a new example xk+1, and proposes a value L[S](xk+1) 2 f0; 1g. Let us stresshere on the fact that L does not have to propose a symmetric function f̂ before havingseen xk+1 but simply a possible label for xk+1; L is allowed to toss random coins, tocombine di�erent expert advices, his unique goal is to predict as well as possible the valueof f�(xk+1).To assess the strategy of L, its average performance called generalization error isevaluated as �g(L[S]) = EX (jL[S](X)� f�(X)j) = PrX fL[S](X) 6= f�(X)g : (1)As the sample size k increases, the sequence �g(L[Sk]) is a sequence of random variablesthat de�nes a sample path, that is a process indexed by sample size k. The best strategyfor A is to choose f� uniformly at random and the best strategy for L knowing S is toguess in the following way : if the sample contains a pair xi; f�(xi) such that xi and xk+1have equal weight predict f�(xi), otherwise predict 0 or 1 with probability 1/2. L will bewrong with probability 1/2 on classes that are not represented in the sample.The reader should notice at this point that drawing an example with speci�c weight isvery much like throwing a ball in an urn with some speci�c label, the label being equal to theweight of the example. The analysis of learning symmetric functions in this simple settingis reducible to the analysis of random allocation in the classical urn model [15]. If weassume that all weights have the same probability (i.e. all urns have the same probabilityto receive a ball), the generalization error is governed by the number of unrepresentedclasses i.e. by the number of empty urns. Its expectation (over random choices of thetarget function and of the sample) is:E�g = 12�1� 1n+ 1�k (2)The variance can be computed without di�culty.2



The above-described problemmerely served to introduce the topic. The learning prob-lem which actually interested us is a noisy variant of the preceding one. With probability� < 12 , A's answer concerning the current example is 
ipped (a 0 becomes a 1, and a 1becomes a 0). In learning theory, this is called random classi�cation noise. Labels ofexamples representing a given class in the sample are not any more necessarily identical,L may nevertheless hope that if he has many representatives of a given class a fraction1 � � will be correctly labeled. He will thus make a probably correct inference usingmajority voting.The preceding remark shows that the relation between the number of classes that arenot represented in the sample and the generalization error does not work anymore. Toderive expressions like (2), one has to analyze the occupancy scheme, to determine howmany representatives there are in each class, and to analyze the in
uence of classi�cationnoise on that occupancy scheme. This has prompted us to investigate a modi�ed urnproblem.Revisited urn occupancy modelsUrn models are frequently used in discrete probability theory; see for example the book byJohnson and Kotz [13]. Among those models, so-called occupancy models have receivedconsiderable attention. In these models, balls are allocated at random amongst a sequenceof urns, and the parameter under study is the number of urns satisfying some property,for example containing a given number of balls (most often, the number of empty urns).See again the book by Johnson and Kotz for a survey of results in this area, and the bookby Kolchin et al. [15] for a detailed study of the asymptotic results that can be obtained.We present a variation on this model, which allows for two types of balls, and inducesdi�erent types of urns. Our urn model is as follows : We throw a speci�ed number of ballsin a set of urns; each ball is thrown independently of the others (for example, there is nolimit on the number of balls that an urn can receive); each urn has the same probabilityto receive a given ball. The balls are of two types (\good" and \bad"), which gives threepossibilities for an urn : either the \good" balls predominate, or the \bad" balls, or thereis an equal number of each type (the urn may be empty). Each type of urn has a speci�ccost; the global cost is assumed to be a linear function of the numbers of urns of eachtype. We want to study this cost as a function of the number of balls k and the numberof urns n.In the classical model, when the number of urns n and the number of balls k areproportional (the central domain in [15]), the distribution of the number of empty urnsfollows asymptotically a normal distribution after adequate normalization and center-ing [13]. The mean and variance of the number of urns with a �xed number of ballsare proportional to n [13]. There are also results on the stochastic process, when theballs are thrown one at a time (see [15, Ch. IV]) : the normalized and centered processis asymptotically gaussian and markovian [15], it can be regarded as a rescaled BrownianMotion [1].Some urn occupancy models with two types of balls have already been proposed in the3



literature. For example, Nishimura and Sibuya [16] and Selivanov [18] study the waitingtime until at least an urn contains balls of two types; this is an extension of the birthdayproblem. Closer to our problem, Popova investigated in [17] the distribution of the vectorwhose components are number of urns with balls of the �rst type only, the second typeonly, and without any balls, and showed that the asymptotic distribution is either Poissonor normal, according to the relative values of the numbers of balls of each type and thenumber of urns.The classical model as well as the extensions with two types of balls prompt us tosearch results of a similar 
avor : mean value, variance and limiting distribution whenthe number of urns n, the number of balls k, and the relationship between them areknown, and when n; k ! +1; when the balls are added sequentially, limiting process fora large time. However, the noisy urn model is signi�cantly more complicated than theempty urn problem. For �nite n, the process is no more Markovian. Hence the prooftechnique used in [1] breaks down. Though Markov property was not explicitly invokedin [15], the markovian character of the empty urn process is responsible for the relativetractability of the generating functions manipulated in [15].We shall show that we can indeed obtain a full asymptotic description of the phe-nomenon when k and n are proportional.The plan of our paper is the following : in the next section, we recall the resultspertaining to the learning of symmetric functions without noise. Then we de�ne preciselyour model and show how we can associate generating functions to the parameters ofinterest in Section 3. We study the static case (the number of balls is �xed) in Section 4and the dynamic model (the balls are thrown at regular intervals) in Section 5. Weshow that, when the number of balls is of the same order as the number of urns, thecost function behaves asymptotically as a gaussian distribution (in the static case) or as agaussian, non-Markov process (in the dynamic case). The conclusion gives suggestions forpossible extensions of our work; we give here some indications as to how the phenomenonof majority (classi�cation of an urn in one of three types, according to the behavior ofthe majority of balls) can be extended to so-called decomposable structures. Finally, anappendix (Section 8) summarizes some mathematical notions that we need during ouranalysis.2 The classical problem : background on symmetricfunctionsTo get a better insight on the learning process and identify the fundamental trends and therole of random perturbations due to random sampling, we will carry out some asymptoticanalysis, letting n go to in�nity, while setting a scaling law between sample size k andproblem dimension n; � 4= kn . This turns out to analyze learning on a time scale that isproportional to problem dimension. 4



For each system size, one de�nes the rcll process indexed by R+ :~�ng (�) 4= �g(b�:nc): (3)An involved analysis [15, 1], shows that the limiting law of sample paths tends to beconcentrated around the average curve�g(�) = 12e��: (4)The limiting learning curve is thus an exponential; this exempli�es a common patternwhen the class of target functions is �nite. It represents the fundamental trend of thelearning process. During an experiment, the actual curve will be a perturbation of thismean curve, the perturbation is due to randomness and �niteness.Thus to get a correct interpretation, it is desirable to analyze the way disorder vanishesas system size increases. There are two possible views on 
uctuations. The central limit(resp. large deviation) viewpoint searches tight results concerning the 
uctuations ofmagnitude �(pn) (resp. �(n)).The mean deviation approach was explored by Renyi and exposed in Kolchin et al. [15]using complex analysis techniques or in Barraez [1] using di�usion approximation tech-niques. This analysis shows that the limiting normalized centered process is Gaussianwith covariance : cov(s; t) = exp�t �1� s exp�s� :(s � t) (5)This provides the characterization of the convergence of learning curves towards a limitingtrajectory. It shows that the latter is not only an average trajectory but also a typicaltrajectory.3 The new urn model and its generating functionsWe shall make heavy use of the technic of generating functions for combinatorial enumera-tion to analyze the model in the static case; see for example [11] for a general presentationand [6] for a basic presentation applied to the analysis of algorithms. We shall give in thissection several generating functions, each describing the problem from a slightly di�erentpoint of view. We give below a brief summary of the basic facts that we shall use; see [6]for a more formal presentation.- Our generating functions are exponential in the variable (y) marking the number ofballs; this comes from the fact that the balls are indistinguishable : the result dependson the �nal con�guration of balls, not on the order in which they were allocated (this isno longer true when we consider the dynamic case).- Let f(x) be the generating function relative to a set of variables x marking some pa-rameters for one urn; the generating function describing the sequence of n distinguishableurns for the same set of parameters is f(x)n.- As a consequence, the generating function describing the allocation of balls in a single5



urn is ey : There is only one way to allocate k identical balls into one urn. The functiondescribing the allocation of balls into the n urns is eny.- If the situation in an urn can be partitioned in two situations, with associated gener-ating functions respectively f1(x) and f2(x), then the function describing the completesituation is f1(x) + f2(x).3.1 What happens in an urn?We consider a �nite sequence of n distinguishable urns, in which we throw balls inde-pendently. The number of balls that an urn can receive is not bounded, and the ballsare assumed to be indistinguishable. The exponential generating function describing theallocation of balls in an urn is then simply ey, with the variable y marking the number ofballs.Now, assume that the balls are of two types (\good" and \bad"), with respectiveprobabilities 1�� (good balls) and � (bad balls) (0 < � < 1=2). The generating functiondescribing the allocation of balls in a given urn can be written as ey = e�y+(1��)y .The two types of balls lead to three possibilities for the urns : An urn is \good" ifthere are more good balls than bad balls; it is \bad" if there is a majority of bad balls,and \neutral" if there is an equal number of good and bad balls (possibly none, this caseincludes empty urns).This translates into generating functions as follows : \In a good urn, the exponent of(1 � �)y is greater than the exponent of �y". To capture this idea, we shall introduce anew variable z, and substitute (1��)yz for (1��)y and �yz�1 for �y : We get a functionof y and z, which we write as a series on z :ey((1��)z+�=z) = Xp2Z ap(y)zp:The positive powers of z indicate a good urn; the negative powers indicate a bad urn, andthe constant term (without z) a neutral urn.The next step is to get an expression of the term ap(y). We shall use the relationey(x+1=x) = Xp2Z Ip(2y)xp;with Ip(y) denoting a (modi�ed) Bessel function : Ip(y) =Pr(y=2)p+2r=r!(r+ p)! (see theAppendix, Section 7.3, for a few properties of Bessel functions). De�ne �2 := �(1 � �);we have thatexp�y �(1� �)z + �z �� = exp �y "� z� + �� z#! = Xp2Z Ip(2� y) ��!p zp;hence ap(y) = (�=�)pIp(2� y) andey[(1��)z+�=z] = Xp2Z Ip(2� y) ��!p zp: (6)6



For z = 1, we get ey == Pp2Z Ip(2� y)(�=�)p, which we shall use to simplify somecomputations in the sequel.3.2 Balance of an urnThe balance of an urn is de�ned as the di�erence between the number of good balls andthe number of bad balls; this is the exponent of the variable z in Equation (6). As theglobal cost is linear function of the costs of individual urns, the ith moment of the globalcost can be determined thanks to the joint law of the cost of i �xed urns. Hence, it isrelevant to determine those joint laws. Moreover it is easy; a straightforward derivationor an approach by generating functions are equally successful.Proposition 3.1 The vector of balances in urns 1::i after throwing k balls in n urns isdistributed according to a law Qi that is with variational distance 2i=n from the law Pi ofa vector of i independent random variables that are distributed as the di�erence betweentwo independent Poisson random variables with means �k=n and (1� �) k=n.Recall that the di�erence of two Poisson random variables with mean y� and y(1��)has the same law as the random variable de�ned by �rst drawing an integer ` accordingto the Poisson law of mean y, then drawing ` i.i.d. f�1; 1g-valued random variable withmean 1� 2�.Recall also that conditionally on the number of balls allocated in urns 1 : : : i, thebalances of the i urns are independent. In the language of [4], this means that the �-�eldgenerated by the number of balls allocated to the �rst i urns is su�cient to computethe variation distance between Pi and Qi ([4, lemma 2.4]). Hence the variation distancebetween Pi and Qi is equal to the variation distance between the law of the vector of ballsallocated to urns 1 : : : i and a vector of i independent Poisson random variables with meank=n. By theorem (5.1) in [4] which relies on previous results by Kersten, this is smallerthan 2i=n. Notice that the latter quantity does not depend on k and �.For large n and k, the law of the balance is asymptotically equal toPr(balance = p =a total ofk balls) � e��  ��!p Ip(2� �):It is also possible to derive this expression from the generating function marking thebalance of an urn by z, and \forgetting" the state of the other urns : this function isequal to f1(y; z) e(n�1)y, with f1(y; z) := Pp2Z(�=�)pIp(2� y)zp describing what happensin the urn under inspection, and ey describing each of the n� 1 other urns. The desiredprobability is then[ykzp]ff1(y; z) e(n�1)yg[yk]ff1(y; 1) e(n�1)yg = k!nk  ��!p [yk]fe(n�1)yIp(2� y)g:This last coe�cient can be estimated, for n! +1 and k = �n, as (see Section 7.1)e(n�1)�Ip(2� �)��np2��n7



The speed of convergence is of order 1=n; this can be proved, either by a result of Diaconisand Friedman [4], or by the generating function approach : Each individual probability ise��(�=�)pIp(2� �)(1 +O(1=n)) (the saddle-point approximation can be improved to givea full asymptotic expansion, in the vein of Good's extension of Daniels's result [10]), andsumming these probabilities gives the result.The same approach gives the joint distribution of the balance in a �xed number r of urns :The probability that the �rst urn has a balance p1, the second urn a balance p2, ..., therth urn a balance pr, when there is a total of k = �n balls, ise�r �  ��!p1+:::+pr Ip1(2� �) : : : Ipr(2� �):3.3 The di�erent states of an urnNow we give the generating function describing the system of n urns, when we are inter-ested no more in the balance of the urns, but simply in their states (good, bad or neutral).De�ne �(y) := Xp<0 ��!p Ip(2�y) = Xp>0����p Ip(2�y); (y) := Xp>0 ��!p Ip(2�y) = ey � I0(2�y)� �(y):Now we introduce a new variable for each possible state of an urn : u is associated toa bad urn, v to a neutral urn, and w to a good urn. We obtain the generating functiondescribing what happens in an urn, with y indicating the number of balls in the urn, bysubstituting u to zp for p < 0, v to z0 and w to zp for p > 0 :u Xp<0 ap(y) + v a0(y) + w Xp>0 ap(y):The generating function describing the possible states of an urn isf(u; v; w; y) := u�(y) + v I0(2�y) + w (y):and the generating function describing the behavior of the system of n urns is (recall thatthe generating function for a sequence of n urns is the nth power of the function for oneurn) F (u; v; w; y) = f(u; v; w; y)n = (u�(y) + v I0(2�y) + w (y))n : (7)3.4 The cost functionNow that we have described the basic model of allocation of balls in urns, and that wehave obtained in (7) the generating function marking the di�erent possibilities for the n8



urns, the next step is to associate a cost with each urn : We assume that the cost of anexperiment (throwing k balls into n urns) is a linear function of the numbers of urns ofeach type:Cost = C0�Number of neutral urns+C1�Number of bad urns+C2�Number of good urns:We shall use the following notations :� The cost of a neutral or empty urn is C0;� The cost of a bad urn is C1;� The cost of a good urn is C2.Examples of costs relevant to learning theoretic applications are C0 = 1, C1 = 2 andC2 = 0, or C0 = 1=2, C1 = 1 � � and C2 = � (we usually have C2 � C0 � C1).The cost of a realization of the scheme of allocations is de�ned as the sum of the costsof each urn. To obtain its generating function, we start from the function F (u; v; w; y)given by Equation( 7), describing the state of the system of urns, and introduce thevariable x marking the global cost as follows : We substitute xC0 for v, xC1 for u and xC2for w. We get G(x; y) := gn(x; y) := �xC0I0(2� y) + xC1�(y) + xC2 (y)�n : (8)Up to a normalization, the coe�cient [xpyk]G(x; y) is equal to the probability that, afterthrowing k balls, the global cost is equal to p :Proba(cost = p=k balls) = [xpyk]G(x; y)[yk]G(1; y) = k!nk [xpyk]G(x; y):In the sequel, we shall assume that p is an integer, which allows us to use Cauchy'sformula and complex integration technics to get approximations of generating functioncoe�cients.4 The static case4.1 The average costThe average cost is equal to [yk]G0x(1; y)=[yk]G(1; y). As G0x = ng0xgn�1, we have thatg0x(x; y) = C0 xC0�1I0(2� y) + C1 xC1�1�(y) + C2 xC2�1 (y):Hence, with g(1; y) = ey,G0x(1; y) = ne(n�1)y(C0 I0(2� y) + C1 �(y) + C2 (ey � I0(2� y)� �(y))= n[C2 eny + (C0 � C2)e(n�1)yI0(2� y) + (C1 � C2)e(n�1)y�(y)]:9



As [yk]G(1; y) = [yk]eny = nk=k!, we obtain the average cost ask!nk n  C2nkk! + (C0 � C2)[yk]fe(n�1)yI0(2�y)g+ (C1 � C2)[yk]fe(n�1)y�(y)g! :To obtain an asymptotic value for k = �n, we apply the saddle-point method to theevaluation of the coe�cients [yk]fe(n�1)yI0(2� y)g and [yk]fe(n�1)y�(y)g (see again theAppendix; Section 7.1); we getAverage cost � n hC2 + (C0 � C2)e��I0(2� �) + (C1 �C2)e���(�)i :4.2 Variance and limiting distributionWhen the number of urns and the number of balls are proportional, the distribution ofthe cost is asymptotically normal. There are several ways to prove it; for example we canapply results by Bender and Richmond [2]; however, in order to use these results, we have�rst to prove that the variance is of exact order n1. We shall use here another theorem,given in [7, p. 278], that gives us directly the asymptotic value of the variance togetherwith the asymptotic normality; we recall it below.Theorem 4.1 Let g(x; y) = Pn;k an;kxkyn be a function with positive coe�cients an;k andentire w.r.t. y. Assume that the parameters k and n grow to in�nity in such a way thatk=n! � > 0, and that � satis�eslimy!+1 yg0y(1; y)=g(1; y) > �:Let � be the unique real positive solution of the equation yg0y(1; y)=g(1; y) = �. De�ne�(x; y) = xg0x(x; y)=g(x; y) and �(x; y) = yg0y(x; y)=g(x; y), and assume that, at (1; �),�0x�0y��0y�0x 6= 0. Then the function f(x) = [yk]fg(x; y)ng=[yk]fg(1; y)ng is the generatingfunction of a probability distribution that is asymptotically normal; its asymptotic meanand variance are � = n �(1; �); �2 = n �0x�0y � �0y�0x�0y (1; �):In our problem, �(1; y) = e�y((C0�C2)I0(2� y)+ (C1�C2)�(y)+C2ey) and we get backthe expression of the average cost when k = n�.Computation of the asymptotic varianceApplying Theorem 3.1, we get that the asymptotic variance is n�20, with (� = � and�0(1; �) = 1) �20 = e�� hg0x + g00x2 � e�� �(g0x)2 � �(g00xy � g0x)2�i ;1Proposition (3.1) immediately reveals that the variance of the normalized cost process should notexceed O(1); thus the variance of the global process should be O(n). It is straightforward to check thatthe normalized variance is the sum of one term corresponding to the variance of the cost of urn 1 -whichis obviously O(1)- and of one term corresponding to the covariance of the cost of urns 1 and 2, multipliedby n � 1. By proposition (3.1), the covariance should be O(1=n).10



where the derivatives of g are at (1; �). After some computations, and with the notationsd0 := C1 � C0 = Cost(bad urn)� Cost(neutral urn);d1 := C0 � C2 = Cost(neutral urn)� Cost(good urn);we get �20 = (d0 + d1)2e���(�) + d 21 e��I0(2� �)� �(d0 + d1)e���(�) + d1e��I0(2� �)�2+� �(�(d0 + d1)� d1)e��I0(2� �) � � (d0 � d1)e��I1(2� �)�2 :We sum up our results so far in the following theorem :Theorem 4.2 Assume that the number n of urns and the number k of balls grow toin�nity in such a way that k = �n for some constant �. The cost (generalization error)is asymptotically normally distributed, with asymptotic mean and varianceE � n hC2 + d1e��I0(2� �) + (d0 + d1)e���(�)i ;�2 � n h(d0 + d1)2e���(�) + d 21 e��I0(2� �)� �(d0 + d1)e���(�) + d1e��I0(2� �)�2+� �(�(d0 + d1)� d1)e��I0(2� �)� � (d0 � d1)e��I1(2� �)�2� :4.3 The in
uence of the ratio � = k=nFor our two examples of cost, we get� When C0 = 1, C1 = 2 and C2 = 0,E[Cost1] � ne��(I0(2� �) + 2�(�))and�2(Cost1) = n he�� (I0(2� �) + 4�(�)) + e�2� ��(1� 2�)2 � (I0(2� �) + 2�(�))2�i :� When C0 = 1=2, C1 = 1 � � and C2 = �,E[Cost2] � n(� + 1� 2�2 e��(I0(2� �) + 2�(�)))and �2(Cost2) = n � 1�2�2 �2 [ e�� (I0(2� �) + 4�(�))+e�2� ��(1 � 2�)2 � (I0(2� �) + 2�(�))2�]:11



Note that E[Cost2] = n� + ((1 � 2�)=2)E[Cost1]; the variances are similarly related :�2(Cost2) = (1=2 � �)2 �2(Cost1).In the two examples of costs we considered, the asymptotic average cost is of theform nh(�) and the function h decreases when � grows. This is often satis�ed : assumethat d0 � d1 � 0 (which is often the case in our learning problem). The average cost isasymptotically equal to nh(�) withh(�) := C2 + d1e��I0(2� �) + (d0 + d1)e���(�):To study the variations of h(�), we compute its derivative h0(�); we use the fact that�0(y) = �(y)+�I0(2� y)��I1(2� y) (see the appendix, eq. 25) to get rid of the derivativeof �; we get h0(�) = ��e��[(d0 � d1)I1(2��) + (d1�=� � d0�=�)I0(2��)]:Hence, for d1 � d0 � d1(1��)=�, h0(�) < 0 and h(�) is a decreasing function of �. Now,for d0 > d1(1� �)=�(> d1), h is �rst increasing, then decreasing; it has a maximum for �such that I1(2��)I0(2��) = �(d0 + d1)� d1�(d0 � d1) :The function t 7! I1(t)=I0(t) is increasing on [0;+1[; hence the uniqueness of the solution.The variance as a function of �:We now consider the asymptotic variance as a function of �; we use the asymptoticequivalents Ip(2� �) = e2� �p4�� �(1 +O(1=t))(p = 0; 1) and (see Sections 7.2 and 7.3 of the Appendix)�(�) = �� � � e2��p4�� �(1 +O(1=t));as � � 1=2, (e(1�2�)�=p4�� �)2 = o(e(1�2�)�=(�p4�� �)) and we get�20 =  d 21 + �� � �(d0 + d1)2! e�(1�2�)�p4�� � (1 +O(1=�)): (9)The equation (9) shows that the asymptotic variance (for large n and k) is exponentiallydecreasing in � (modulated by 1=p�).5 The dynamic caseOur aim in this part is to prove that the process describing the cost can be preciselycharacterized. The �rst step is to introduce a notion of time : We consider a discrete12



time, and add a ball at each moment. The number of balls k is then equal to the time t; westill assume that the number of balls is proportional to the number of urns : k = t = �n.The number of bad balls follows a binomial distribution of parameter �; this distributionis asymptotically normal, with mean k� = �nt, variance k�(1��) = ��2n and covariancen(t2 � t1)�(1 � �).The cost is now a function of the time, i.e. a stochastic process : Cost(t). We shall�rst compute the covariance at di�erent times : Cov(Cost(t1); Cost(t2)). It is possibleto derive such an expression by elementary means (see Section 5.1); we shall also present(in Section 5.3) a computation using the generating function describing what happens inthe urns at two di�erent times t1 and t2. This generating function is then used to provethe gaussian behavior of the asymptotic bivariate distribution (Section 5.4). Such anapproach is inspired from what was done for the classical occupancy model [15, Ch. IV];it is probably easier to generalize to higher dimensions that the direct approach.5.1 The covarianceThe fact that the balance in a �xed numbers of urns lends itself to an easy analysisvia the Poisson approximation (cf proposition 3.1) provides a safe way to determine theasymptotic covariance of the cost process.Let us adopt the following conventions: Zi(�) = number of balls in urn i at time �n ,and in the sequel �1 � �2, N(i; �) �= 1 (resp. M(i; �) �= 1) if urn i is neutral (resp. bad)at time �n, and 0 otherwise.The global cost Cost at time �n is:C2 + nXi=1 ((C0 � C2)N(i; �) + (C1 � C2)Mi(�)) : (10)If the centered cost process is normalized by 1=pn, then using the exchangeability of theMi and Ni, the normalized covariance can be written down as:(C0 � C2)2 [EN1(�1)N1(�2)�EN1(�1)EN1(�2)]+(C1 � C2)2 [EM1(�1)M1(�2)�EM1(�1)EM1(�2)]+(C0 � C2)(C1 � C2)�EM1(�1)N1(�2)�EM1(�1)EN1(�2)+EN1(�1)M1(�2)�EN1(�1)EM1(�2)�+(n� 1)�(C0 � C2)2 [EN1(�1)N2(�2)�EN1(�1)EN2(�2)]+ (C1 � C2)2 [EM1(�1)M2(�2)�EM1(�1)EM2(�2))]+ (C0 � C2)(C1 � C2)[EM1(�1)N2(�2)�EM1(�1)EN2(�2)+EN(1; �1)M(2; �2)�EN(1; �1)EM(2; �2)]� (11)
13



The various expectations involved in the preceding sum can be identi�ed with proba-bilities of events occuring at di�erent instants in possibly di�erent urns. The computationof the joint probabilities is facilitated by noticing that if we condition on the number ofballs that have been thrown in two distinct urns, the fates of those two urns are indepen-dent. One should also notice that E (N(1; �1)jZ1) and E (M(1; �1)jZ1) do not depend onn. Let us see how to compute the di�erence between the joint probabilities and theproduct probabilities of two events concerning two di�erent urns (say urn 1 and 2)).EN(1; �1)M(2; �2)�EN(1; �1)EM(2; �2)= Pk1;k2 E (N(1; �1)jZ1)E (M(2; �2)jZ2) Pr�Z1(�1) = k1 ^ Z2(�2) = k2�� Pr�Z1(�1) = k1�Pr�Z2(�2) = k2�!(12)The fact that the variational distance between the occupancy law of two di�erent urnsand the joint law of two independent Poisson random variables is O(1=n) already warrantsthat the second summand in (11) (+(n� 1)[: : :] is O(1).As all terms involving two distinct urns have this form, it is highly bene�cial tocompute the �rst two terms in the development ofI(k1; k2) 4= �Pr�Z1(�1) = k1 ^ Z2(�2) = k2�� Pr�Z1(�1) = k1�Pr�Z2(�2) = k2��when n!1.I(k1; k2) = Ph�k2 � �1nk1+h��k1+hh ��(�2��1)nk2�h �(1� 2n )�1n�(k1+h)(1 � 1n)�2n�(k2�h) 1nk1+k2� ��1nk1 ��(�2nk2 � 1nk1+k2 (1� 1n)�1n+�2n�(k1+k2)using developments (29) in section 7:5= e��1��2 �k22 �k11k2! k1! �(k1��1)(�2�k2)�2n + o(1=n)� (13)The conditional probabilities are:E�N(1; �1)����Z1(�1) = 2k1� =  2k1k1 !�k1 (�1�)k1E�M(1; �1)����Z1(�1) = k1� = Xh : k1<2h�2k1  k1h!�h(1� �)k1�h (14)Then straightforward computations using identities (28) in section (7.5) lead to the de-termination of the second summand in (11). The computation of the joint probabilitiesin the �rst summand has to be carried out on a case by case basis. Only the �rst term inthe development is required. Let us illustrate the problem on two situations computationof E(N(1; �1)N(1; �2) and E(M(1; �1)N(1; �2).In the �rst case, there is no need to compute anything, since if N(1; �1) = 1, theprobability that N(1; �2) = 1 is just the probability that there are as many good as bad14



examples from class 1 among the last (�2 � �1)n examples. The latter quantity turns tobe Pr fN(1; �2 � �1)g. HenceE�N(1; �1)N(1; �2)��E�N(1; �1)�E�N(1; �2)�!n!1 e��1��2 I0(2��1)�e�1I0(2�(�2 � �1))� I0(2��2)� (15)In the second case, thanks to a re
ection trick, there is no need to compute anything aswell. We will �rst show that:E�M(1; �1)N(1; �2)� = Pr�urn 1 is good at �1 ^ N(1; �2) = 1�: (16)Let us assume that on some sample path S of the random allocation process, N(1; �2) = 1is realized. Now consider the sample S where the labels of balls allocated to urn 1 in Shave been 
ipped. Since N(1; �2)[S] = 1, N(1; �2)[S] = 1, and moreover the two sampleshave the same probability, and urn 1 is good at time �1 on S i� urn 2 is bad at time �2 onS. Hence when N(1; �2) is realized, there is a probability-preserving 1-1 correspondencebetween the samples that are good at time �1 and those that are bad at time �1 Finally:E�M(1; �1)N(1; �2)��E�M(1; �1)�E�N(1; �2)�= e��1��2�e�12 (I0(2��2)� I0(2��1)I0(2�(�2 � �1)))� �(�1)I0(2��2)� (17)If we adopt the choice for C0 = 1=2, C1 = 1�� and C2 = �, the asymptotic covarianceof the normalized centered cost process between (normalized) times �1 and �2 is equal toe��24  �I0(2��2) + 2I0(2��1)�(�2 � �1) +Pi>0;j>0 ����j Ii(2��1) Ij�i(2�(�2 � �1))��e��1�I0(2��1) I0(2��2) + 2I0(2��2)�(�1) + 2I0(2��1)�(�2) + �(�1)�(�2)+ �1[(1� 2�)I0(2��1) + �I1(2��1)][(1 � 2�)I0(2��2) + �I1(2��2)]�!(18)5.2 Multivariate generating functionWe assume here that the balls are thrown in two groups. The �rst group is thrown atthe time t1 (or during the interval [1; t1]) and its balls are marked by y1; we shall use thevariable z1 to help in distinguishing good balls from bad balls (see Section 3.1) : a goodball is marked as (1 � �)y1z1 and a bad ball as �y1=z1. Similarly, the second group isthrown at the time t2 (or during the interval [t1 + 1; t2]) and we use the variables y2 andz2 to mark its balls. The generating function describing the allocation of balls of the twogroups in a single urn is ey1(�=z1+(1��)z1)+y2(�=z2+(1��)z2): (19)15



We shall use the variables ui, vi and wi to indicate the state of the urn after throwingthe �rst group (i = 1) and the second group (i = 2) : an urn which is bad at time ti ismarked by ui; if it is neutral it is marked by vi, and by wi if it is good. We rewrite thefunction (19) as ey2(�=z2+(1��)z2) � Xn2Z In(2� y1) � z1� !nand we mark the state of the urn after throwing the �rst group of balls; we getey2(�=z2+(1��)z2) � "w1 Xn>0 In(2� y1) � z1� !n + v1I0(2� y1) + u1 Xn<0 In(2� y1) � z1� !n# :Now we consider the second group of balls : we expand the term ey2(�=z2+(1��)z2), substitutez for z1 and for z2, and getw1 Xn>0; p2Z In(2� y1)Ip(2� y2) � z� !n+p+v1I0(2� y1)Xp2Z Ip(2� y2) � z� !p+u1 Xn<0; p2Z In(2� y1)Ip(2� y2) � z� !n+p :The sign of the exponent of z, n + p, determines the type of the urn at the time t2.We �rst consider the case where the urn is neutral at the time t1 : The factor of v1,Pp2Z Ip(2� y2) (� z=�)p, becomesu2Xp<0 Ip(2� y2) ��!p + v2I0(2� y2) + w2Xp>0 Ip(2� y2) ��!p :Using the de�nitions of �(y) and  (y), we get the terms relative to the variable v1 :v1u2I0(2� y1)�(y2) + v1v2I0(2� y1)I0(2� y2) + v1w2I0(2� y1) (y2):We now consider the case where the urn is good at the time t1 : this corresponds to theterms in w1. The coe�cient of w1, Pn>0; p2Z In(2� y1)Ip(2� y2) (� z=�)n+p, becomesw2 Xn>0; n+p>0 In(2� y1)Ip(2� y2) ��!n+p + v2 Xn>0 In(2� y1)I�n(2� y2)+u2 Xn>0; n+p<0 In(2� y1)Ip(2� y2) ��!n+p :Now the coe�cient of w1v2 can be expressed simply in terms of the Bessel function I0(see the addition formula (23) in the Appendix) :Xn>0 In(2� y1)I�n(2� y2) = [I0(2� (y1 + y2)� I0(2� y1) I0(2� y2)]=2 =: �I(y1; y2):16



De�neS(y1; y2) := Xn>0; n+p>0 In(2� y1)Ip(2� y2) ��!n+p = Xn>0 In(2� y1) ��!n Xp>�n Ip(2� y2) ��!p ;then the coe�cient of w1w2 is equal to S(y1; y2), and the coe�cient of w1u2 can beexpressed in terms of I0, � and S. To do this, we simplify the term  (y1) ey2 with thehelp of the addition formula (22) : (y1)ey2 = Xn>0; q2Z In(2� y1)Iq�n(2� y2) ��!q= Xn;q>0 In(2� y1)Iq�n(2� y2) ��!q + Xn>0 In(2� y1)I�n(2� y2)+ Xn>0; q<0 In(2� y1)Iq�n(2� y2) ��!q :The �rst sum of the right-hand side is equal to S(y1; y2), and the second sum to �I(y1; y2);the third sum is the coe�cient of w1u2. Hence the terms relative to the variable w1 arew1w2S(y1; y2) + w1v2�I(y1; y2) + w1u2( (y1)ey2 � S(y1; y2)��I(y1; y2)):The contribution of the terms in u1 (the urn is bad at the time t1) is similarly computed :De�ne T (y1; y2) :=  (y1 + y2)� S(y1; y2)� I0(y1) (y2);then the terms including the variable u1 can be simpli�ed and we getu1w2T (y1; y2) + u1v2�I(y1; y2) + u1u2(�(y1)ey2 � T (y1; y2)��I(y1; y2)):The multivariate generating function describing the behavior of a single urn at the timest1 and t2 is thusw1w2S(y1; y2) + w1v2�I(y1; y2) + w1u2( (y1)ey2 � S(y1; y2)��I(y1; y2))+v1w2I0(2� y1) (y2) + v1v2I0(2� y1)I0(2� y2) + v1u2I0(2� y1)�(y2)+u1w2T (y1; y2) + u1v2�I(y1; y2) + u1u2(�(y1)ey2 � T (y1; y2)��I(y1; y2)):For ui = vi = wi = 1 (we \forget" the state of the urn at the times t1 and t2), we getback the generating function describing the allocation of the two types of balls, which issimply ey1+y2 . If we consider the urn at the time t1 (u2 = v2 = w2), we getey2 (u1�(y1) + v1I0(2� y1) + w1 (y1)) = ey2f(u1; v1; w1; y1):If we consider the urn at the time t2 and forget its state at the time t1 (u1 = v1 = w1 = 1),we getu2 �ey1+y2 � I0(2� (y1 + y2))�  (y1 + y2)�+ v2I0(2� (y1 + y2)) + w2 (y1 + y2)These formul� could also be derived directly, by marking directly the parameters ofinterest in suitable generating functions. 17



5.3 Another derivation of the covarianceThe bivariate generating function that we have just computed describes what happens inthe urns at two di�erent times, and we can use it to compute the covariance. First, weget the multivariate generating function of the cost at two di�erent times : We use thevariables x1 and x2 to mark the cost at the times t1 and t2; the variables y1 and y2 are usedto mark respectively the number of balls at the time t1 and the number of balls addedbetween t1 and t2. The function H(x1; x2; y1; y2) is, as before, equal to h(x1; x2; y1; y2)n,with h describing what happens in an urn : h is obtained from the multivariate functionin ui, vi and wi by substituting xC1i for ui, xC0i for vi and xC2i for wi (i = 1; 2); we geth(x1; x2; y1; y2) =xC21 xC22 S(y1; y2) + xC21 xC02 �I(y1; y2) + xC21 xC12 ( (y1)ey2 � S(y1; y2)��I(y1; y2))+xC01 xC22 I0(2� y1) (y2) + xC01 xC02 I0(2� y1)I0(2� y2) + xC01 xC12 I0(2� y1)�(y2)+xC11 xC22 T (y1; y2) + xC11 xC02 �I(y1; y2) + xC11 xC12 (�(y1)ey2 � T (y1; y2)��I(y1; y2)):We then use this function as follows : Let Cost1 and Cost2 be the costs at two di�erenttimes t1 and t2 (t1 < t2). The covariance is de�ned as E[Cost1�Cost2]�E[Cost1]�E[Cost2].The expectation of the cost at a time t1, knowing that we throw k1 balls up to thetime t1, is easily computed from the generating function G(x; y) for the cost, given by theequation (8), as [yk1]G0x(1; y)=[yk1]G(1; y) (see Section 3.1). Similarly, the expectation ofthe cost at a time t2, knowing that we throw k2 balls in the interval ]t1; t2], and a totalof k1 + k2 balls, is [yk1+k2 ]G0x(1; y)=[yk1+k2 ]G(1; y). Now the expectation of the product,given that we throw k1 balls in the interval ]0; t1] and k2 balls in the interval ]t1; t2], canbe obtained as E[Cost1 � Cost2] = [yk1yk2]H 00x1x2(1; 1; y1; y2)[yk1yk2]H(1; 1; y1; y2) :Of course, [yk1yk2]H(1; 1; y1; y2) = 1=(k1!k2!). NowH 00x1x2 = nh00x1x2hn�1+n(n�1)h0x1h0x2hn�2and we get an expression for H 00x1x2(1; 1; y1; y2). We can obtain the covariance by takingthe derivatives of H for x1 = x2 = 1, then extracting the coe�cients (we shall need asecond-order approximation for the ones that have a multiplicative factor n(n�1); a �rst-order approximation su�ces for those terms that have a multiplicative factor of order n),then injecting these approximations in the expression for the covariance; this approachrequires also that we get a second-order approximation of the expectations (the �rst-orderterms have a multiplicative factor of order n2 and are canceled by the terms with a similarweight in E[Cost1 � Cost2]).5.4 Bidimensional distributionWe show now that the bi-dimensional distribution is asymptotically normal.To do this, we shall show that the characteristic function of the normalized costsconverges towards the characteristic function of a bivariate normal distribution. De�ne�1 := Cost1 � E[Cost1]pn ; �2 := Cost2 � E[Cost2]pn :18



The bivariate characteristic function of �1 and �2 is obtained from the generating functionof the costs H(x1; x2; y1; y2) (see Section 5.3) asF�1;�2(t1; t2) = e� ipn (t1E[Cost1 ]+t2E[Cost2]) "yk11k1! yk22k2!# nH �eit1=pn; eit2=pn; y1; y2�o :We have thus to evaluate the coe�cient [yk11 yk22 ]nh �eit1=pn; eit2=pn; y1; y2�no. To do this,we shall use, as we did before when we met coe�cients of the nth power of a function, asaddle-point approximation. We write the coe�cient as� 12i��2 I I h �eit1=pn; eit2=pn; y1; y2�n dy1yk1+11 dy2yk2+12 ;and we use for integration contours two circles centered at the origin, and passing throughthe saddle points, i.e. whose radii r1 and r2 are the respective solutions of the equationsy1h0y1=h = (k1 + 1)=n and y2h0y2=h = (k2 + 1)=n. We do not need to solve exactly theseequations : To show the convergence of the characteristic function towards the charac-teristic function of a bidimensional distribution, we shall let n! +1; hence eit1=pn ! 1and eit2=pn ! 1, and we can choose for approximate saddle points the solutions of theequations y1h0y1(1; 1; y1; y2)=h(1; 1; y1; y2) = k1=n and y2h0y2(1; 1; y1; y2)=h(1; 1; y1; y2) =k2=n. These solutions are r1 = �1 and r2 = �2, and we integrate on the contoursfy1 = �1ei�1;�� � �1 � �g and fy2 = �2ei�2;�� � �2 � �g. Now the integral forj�1j � �; j�2j � � can be broken into two parts : the central part is for j�1j; j�2j � log n=pn,and gives the main contribution to the integral; the remainder gives error terms. Themain point is that the derivatives of second or third order of H, at or around the pointx1 = x2 = 0, are of order n. We do not give here the detailed computations, which arerather cumbersome; the interested reader can go back to [15, p. 167-170] or to [8, p. 402-408], where similar bivariate methods are applied to the same kind of problem, namelyto study limiting distributions through their generating function.A similar approach can probably be used to prove that the �nite-dimensional distributionsare asymptotically normal; however we have �rst to get the generating function for a �nitenumber of costs. Although this poses no theoretical di�culty, the number of terms of thegenerating function for p costs is 3p, which makes it di�cult to write the function in apleasant form.6 Conclusion and extensionsWe have presented a new urn model to study the generalization error in learning symmetricfunctions with noise.From the initial learning-theoretic viewpoint, this detailed analysis reveals that a typi-cally exponential learning curve can undergo subtle distortions when random classi�cationnoise is introduced : the generalization error is no more a simple exponential but the prod-uct of an exponential with series of Bessel functions. This would have been di�cult to19



characterize in numerical simulations, though the fact that noisy learning curves are nomore simple exponentials was already apparent.We have shown the gaussian behavior of the limiting distribution and process, whenthe number of balls k and the number of urns n are proportional. It should be notedthat the relation is not strict : our results can probably be extended to k=n belongingto a closed interval of ]0;+1[ (the central domain of [15]). However, when n and kno longer have the same growth rate, we can expect a di�erent behavior. The analogywith the empty urns model suggests that, for example, we might get Poisson results fork = n log n. Possible extensions also include the waiting time until some cost is reached,i.e. until the error of the learning process becomes smaller than some bound.The generality of that pattern of 
uctuations in learning problems remains to beassessed.We believe that another contribution of our paper is the presentation of a new kindof admissible construction : the majority phenomenon that comes from building a com-binatorial structure on two types of objects (good and bad in this paper), then decidingon the type of the structure according to the type of the majority of the basic objects.For example, we can have two types of basic objects, build cycles on theses objects andcombine these cycles into a set, then ask for the number of cycles of the set that have amajority of elements of one type, or an equal number of elements of each type. It shouldbe possible to extend the distribution results on the number of components presented byFlajolet and Soria [5] to study the number of components of a given type (good, bad orneutral) for various combinatorial constructs.AcknowledgmentsWe thank P. Flajolet for information on Bessel functions and G. Louchard for informationon gaussian processes.7 AppendixWe give in this part some mathematical results that we need for our analysis : asymptoticexpansions at order 2 for coe�cients of functions of the type enyf(y), basic facts on Besselfunctions, and some properties of the function � de�ned in Section 3.3.7.1 Asymptotic expansionsWe need in several places of our computations the �rst terms of the asymptotic expansionof a coe�cient of the type [yk]fenyf(y)g. This is basically a special case (for g(y) = ey) ofa variation on a coe�cient of the type [yk]fg(y)ng. Such coe�cients were studied, whenn and k grow to in�nity while staying (roughly) proportional, by Daniels [3], who gavethe asymptotic equivalent, and by Good [10], who extended the results of Daniels to geta full asymptotic expansion. In [9], we presented an extension of Daniels's result to allow20



for a factor f(y) of slower growth rate, which is the case if f(y) does not depend on n atall. All these papers use a saddle point approximation, which we can adapt to deal withcoe�cients [yk]fe(n�a)yf(y)g. We get[yk]fe(n�a)yf(y)g = e(n�a)�f(�)�k+1q2�r(�)  1 + �2 + 2�2k � 112k + o(1k )! ;with � = k=n and � = 1 + a� � �f(�); �f(y) = yf 0(y)=f(y) and r(�) = f 00(�)=f(�) �(f 0=f)2(�) + (k + 1)=�2.7.2 Bessel functionsWe refer the reader to the book by Whittaker and Watson [21, Ch. 17] or the treatise byWatson [20] for detailed information.De�nition In(t) =Xr 1r!(r + n)! � t2�2r+n :The summation is for r � 0 if n � 0, and for r � �n if n < 0. Note that I�n = In. Weuse mostly the functions I0(t) = Xr�0 1r!2 � t2�2r ;I1(t) = Xr�0 1r!(r + 1)! � t2�2r+1 :Derivatives of Bessel functionsI 0n(t) = In+1(t) + nt In(t) = In�1(t) + In+1(t)2 ; (20)I 00n(t) + 1t I 0n(t) = (1 + n2t2 )In(t): (21)In particular, I 00 = I1 and I 01(t) = I2(t) + (1=t)I1(t).Addition formul� Xn2Z In(x)Iq�n(y) = Iq(x+ y): (22)For q = 0, Xn2Z In(x)In(y) = I0(x+ y): (23)Asymptotic behaviorFor real t! +1, In(t) = etp2�t  1� 4n2 � 18t +O � 1t2�! :21



7.3 The function �(y)We recall that the function � is de�ned as a (weighted) sum of Bessel functions :�(y) = Xp�1����p Ip(2� y): (24)An alternative de�nition uses the Lommel functions (see [20, p. 537])Un(w; z) = Xm�0(�1)m(w=z)n+2mJn+2m(z);with Jp(z) the classical Bessel function (Ip(y) = (�i)pJp(iy)) :�(y) + I0(2� y) = U0(�2i� y; 2i� y) + iU1(�2i� y; 2i� y):The function � is increasing.Asymptotic behaviorFor y ! +1 : �(y) � K e2� yp4� � y with K = �� � � = 1q1��� � 1 :Remark : the factor K is equal to 0 for � = 0, is increasing with �, and becomes in�nitewhen �! 1=2.Sketch of proof :The proof begins with the equalitye z2 (u+ 1u ) = +1Xp=�1 upIp(z):Hence Ip(z) = [up]fe z2 (u+ 1u )g = (1=2i� ) H e(z=2)(u+1=u)u�p�1du, and we obtain an integralrepresentation of � for t = �=� 2]0; 1[ :�(y) = 12i� I e� y(u+ 1u )Xp�1 tpup+1 du = I eh(y;u)duwith h(y; u) = �y(u+ 1=u) + log(t=(u(u� t)). The integration contour circles around t;the saddle point heuristic suggests that we choose as contour a circle of radius the valueof u that cancels h0u(y; u). For large y, this value is close to 1 and we choose for integrationcontour the circle fu = ei�;�� � � � �g. The details can be worked out without anymajor di�culty and we obtain the asymptotic value of �(y). If desired, the saddle pointmethod can give more terms of the expansion.22



Di�erential equationThe function � satis�es a linear di�erential equation, which can be used to give an expres-sion of the derivative �0(y). We simply derive the relation (24) and use the equality (20);we obtain �0(y) = �(y) + � I0(2� y)� � I1(2� y): (25)De�ne z = 2� y and �1(z) = �(z=2�); �1 is a solution of the di�erential equation2� �01(z) = �1(z) + �I0(z)� �I1(z): (26)We seek a solution of the type �1(z) = ez=2��(z), with�0(z) = �2�e�z=2�I0(z)� 12e�z=2�I1(z):Now I1(z) = I 00(z) and R e�z=2�I1(z) = e�z=2�I0(z) + (1=2�) R e�z=2�I0(z). This gives thegeneral solution�1(z) = �1� 2�4� ez=2� Z z0 e�t=2�I0(t) dt� 12I0(z) + Cez=2�:The constant C is chosen such that �(0) = 0; hence C = 1=2 and we get an expressionfor � :�(y) = 12 (ey � I0(2� y))� 12(1� 2�) ey �0(2� y) with �0(z) = Z z0 e�tI0(2� t) dt: (27)The asymptotic expression of �(y) together with the expression of �0(y) in terms of �(y)give, for y ! +1, �0(y) � 2� �� � � e2� yp4� � y:The second derivative of � satis�es the following relation, which helps to simplify someexpressions in the computation of the variance :�00(y) = �(y) + �2I0(2�y) + (2� � 1)� I1(2�y)� �2I2(2�y):7.4 IdentitiesThe following identities prove useful during the derivation of the covariance.P0�h (� y)2hh!h! (2h) = 2� y I1(2�y)P0�h (� y)2h!h! ((2h)2 � (2h)) = (2� y)�2� y I0(2�y)� I1(2�y)�P0�h<l �l (1��)h yh+lh!l! (h+ l) = y @��(y)@yP0�h<l �l (1��)h yh+lh!l! ((h+ l)2 � (h+ l)) = y2 @2��(y)@y2 (28)23
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