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Abstract

We present an urn model that appears in the study of the performance of a
learning process of symmetric functions. This model is a variation on the classical
occupancy model, in which the balls are of two types (good and bad). We study
the cost of the learning process in the static and dynamic cases; we find gaussian
limiting distributions and processes.

1 Introduction

From learning theory to urn problems

The original motivation of this investigation came from Computational Learning The-
ory [14]. During recent years, learning theory has paid a renewed attention to learning
curves. Those curves monitor the improvement of the performance of the learner as she
gets more information from her environment. Investigations based on Statistical Physics
techniques [19] have portrayed a variety of classes of behaviors. Though those investiga-
tions were concerned with rather simple systems like perceptrons, they had to resort to
advanced methods like replica calculus that still require foundational elaboration. Other
analysis [12] used approximations to provide rigorous upper bounds. The results pre-
sented in those papers are some kind of laws of large numbers, they provide information
on the average behavior of large systems, but they disregard the fluctuations around the
average behavior. Our intention was to focus our effort on highly simplified problems
and to carry out the analysis of the fluctuations around that behavior after appropriate
normalization. It turns out that even for outrageously simplified learning problems this
is a non trivial task.



The learning-theoretic problem we investigated is PAC-learning symmetric functions.
Rather than defining PAC-learning problem in general, we will describe precisely the is-
sues raised by the determination of the learning curves defined by symmetric functions
under various conditions. Boolean symmetric functions map bitvectors from {0,1}" onto
{0,1} according to their Hamming weight (AND, OR, MAJORITY, PARITY are symmetric
functions). The set of 2"t! symmetric functions on n variables is denoted G,,. Symmetric
functions partition the elements of {0,1}" according to their Hamming weight in n 4 1
classes (the Hamming weight of an element of {0,1}" is its number of components equal
to 1). {0,1}" is provided with a probability law D. Learning is a game between two
parties : the learner £ and an adversary A. The adversary chooses the target symmetric
function f*. In the most primitive version, £ draws elements according to D and asks A
about the value of f on those elements. After k random drawings, £ has the following
couples :

{(n, 7 (21)) - (s [ (20) )

defining the sample S. Using that sample, £ may formulate some hypothesis on f*.

L draws a new example a1, and proposes a value L[S](xx11) € {0,1}. Let us stress
here on the fact that £ does not have to propose a symmetric function f before having
seen rpiq but simply a possible label for z;y1; £ is allowed to toss random coins, to
combine different expert advices, his unique goal is to predict as well as possible the value
of [*(2r41).

To assess the strategy of L, its average performance called generalization error is
evaluated as

¢o(L[S]) = Ex (|£[S)(X) = [7(X)]) = Br {£[S](X) # [(X)} . (1)

As the sample size k increases, the sequence ¢,(£[S*]) is a sequence of random variables
that defines a sample path, that is a process indexed by sample size k. The best strategy
for A is to choose f* uniformly at random and the best strategy for £ knowing S is to
guess in the following way : if the sample contains a pair z;, f*(x;) such that a; and 41
have equal weight predict f*(x;), otherwise predict 0 or 1 with probability 1/2. £ will be
wrong with probability 1/2 on classes that are not represented in the sample.

The reader should notice at this point that drawing an example with specific weight is
very much like throwing a ball in an urn with some specific label, the label being equal to the
weight of the example. The analysis of learning symmetric functions in this simple setting
is reducible to the analysis of random allocation in the classical urn model [15]. If we
assume that all weights have the same probability (i.e. all urns have the same probability
to receive a ball), the generalization error is governed by the number of unrepresented
classes i.e. by the number of empty urns. Its expectation (over random choices of the
target function and of the sample) is:

1 1 k
Ee,=-[1- 2
“ 2( n—l—l) ()

The variance can be computed without difficulty.



The above-described problem merely served to introduce the topic. The learning prob-
lem which actually interested us is a noisy variant of the preceding one. With probability
p< %, A’s answer concerning the current example is flipped (a 0 becomes a 1, and a 1
becomes a 0). In learning theory, this is called random classification noise. Labels of
examples representing a given class in the sample are not any more necessarily identical,
L may nevertheless hope that if he has many representatives of a given class a fraction
1 — p will be correctly labeled. He will thus make a probably correct inference using
majority voting.

The preceding remark shows that the relation between the number of classes that are
not represented in the sample and the generalization error does not work anymore. To
derive expressions like (2), one has to analyze the occupancy scheme, to determine how
many representatives there are in each class, and to analyze the influence of classification
noise on that occupancy scheme. This has prompted us to investigate a modified urn
problem.

Revisited urn occupancy models

Urn models are frequently used in discrete probability theory; see for example the book by
Johnson and Kotz [13]. Among those models, so-called occupancy models have received
considerable attention. In these models, balls are allocated at random amongst a sequence
of urns, and the parameter under study is the number of urns satisfying some property,
for example containing a given number of balls (most often, the number of empty urns).
See again the book by Johnson and Kotz for a survey of results in this area, and the book
by Kolchin et al. [15] for a detailed study of the asymptotic results that can be obtained.

We present a variation on this model, which allows for two types of balls, and induces
different types of urns. Our urn model is as follows : We throw a specified number of balls
in a set of urns; each ball is thrown independently of the others (for example, there is no
limit on the number of balls that an urn can receive); each urn has the same probability
to receive a given ball. The balls are of two types (“good” and “bad”), which gives three
possibilities for an urn : either the “good” balls predominate, or the “bad” balls, or there
is an equal number of each type (the urn may be empty). Each type of urn has a specific
cost; the global cost is assumed to be a linear function of the numbers of urns of each
type. We want to study this cost as a function of the number of balls & and the number
of urns n.

In the classical model, when the number of urns n and the number of balls £ are
proportional (the central domain in [15]), the distribution of the number of empty urns
follows asymptotically a normal distribution after adequate normalization and center-
ing [13]. The mean and variance of the number of urns with a fixed number of balls
are proportional to n [13]. There are also results on the stochastic process, when the
balls are thrown one at a time (see [15, Ch. IV]) : the normalized and centered process
is asymptotically gaussian and markovian [15], it can be regarded as a rescaled Brownian
Motion [1].

Some urn occupancy models with two types of balls have already been proposed in the



literature. For example, Nishimura and Sibuya [16] and Selivanov [18] study the waiting
time until at least an urn contains balls of two types; this is an extension of the birthday
problem. Closer to our problem, Popova investigated in [17] the distribution of the vector
whose components are number of urns with balls of the first type only, the second type
only, and without any balls, and showed that the asymptotic distribution is either Poisson
or normal, according to the relative values of the numbers of balls of each type and the
number of urns.

The classical model as well as the extensions with two types of balls prompt us to
search results of a similar flavor : mean value, variance and limiting distribution when
the number of urns n, the number of balls &, and the relationship between them are
known, and when n, k& — 4o0c0; when the balls are added sequentially, limiting process for
a large time. However, the noisy urn model is significantly more complicated than the
empty urn problem. For finite n, the process is no more Markovian. Hence the proof
technique used in [1] breaks down. Though Markov property was not explicitly invoked
in [15], the markovian character of the empty urn process is responsible for the relative
tractability of the generating functions manipulated in [15].

We shall show that we can indeed obtain a full asymptotic description of the phe-
nomenon when k£ and n are proportional.

The plan of our paper is the following : in the next section, we recall the results
pertaining to the learning of symmetric functions without noise. Then we define precisely
our model and show how we can associate generating functions to the parameters of
interest in Section 3. We study the static case (the number of balls is fixed) in Section 4
and the dynamic model (the balls are thrown at regular intervals) in Section 5. We
show that, when the number of balls is of the same order as the number of urns, the
cost function behaves asymptotically as a gaussian distribution (in the static case) or as a
gaussian, non-Markov process (in the dynamic case). The conclusion gives suggestions for
possible extensions of our work; we give here some indications as to how the phenomenon
of majority (classification of an urn in one of three types, according to the behavior of
the majority of balls) can be extended to so-called decomposable structures. Finally, an
appendix (Section 8) summarizes some mathematical notions that we need during our
analysis.

2 The classical problem : background on symmetric
functions

To get a better insight on the learning process and identify the fundamental trends and the
role of random perturbations due to random sampling, we will carry out some asymptotic
analysis, letting n go to infinity, while setting a scaling law between sample size k and

problem dimension n; « 2 % This turns out to analyze learning on a time scale that is
proportional to problem dimension.



For each system size, one defines the RCLL process indexed by R :

&r(a) £ egllan]). (3)

An involved analysis [15, 1], shows that the limiting law of sample paths tends to be
concentrated around the average curve

ce(a) = —e™ 7. (4)

The limiting learning curve is thus an exponential; this exemplifies a common pattern
when the class of target functions is finite. It represents the fundamental trend of the
learning process. During an experiment, the actual curve will be a perturbation of this
mean curve, the perturbation is due to randomness and finiteness.

Thus to get a correct interpretation, it is desirable to analyze the way disorder vanishes
as system size increases. There are two possible views on fluctuations. The central limit
(resp. large deviation) viewpoint searches tight results concerning the fluctuations of
magnitude ©(y/n) (resp. O(n)).

The mean deviation approach was explored by Renyi and exposed in Kolchin et al. [15]
using complex analysis techniques or in Barraez [1] using diffusion approximation tech-
niques. This analysis shows that the limiting normalized centered process is Gaussian
with covariance :

cov(s,t) = exp™ (1 — SeXp_S) (s <) (5)

This provides the characterization of the convergence of learning curves towards a limiting
trajectory. It shows that the latter is not only an average trajectory but also a typical
trajectory.

3 The new urn model and its generating functions

We shall make heavy use of the technic of generating functions for combinatorial enumera-
tion to analyze the model in the static case; see for example [11] for a general presentation
and [6] for a basic presentation applied to the analysis of algorithms. We shall give in this
section several generating functions, each describing the problem from a slightly different
point of view. We give below a brief summary of the basic facts that we shall use; see [6]
for a more formal presentation.

- Our generating functions are exponential in the variable (y) marking the number of
balls; this comes from the fact that the balls are indistinguishable : the result depends
on the final configuration of balls, not on the order in which they were allocated (this is
no longer true when we consider the dynamic case).

- Let f(x) be the generating function relative to a set of variables x marking some pa-
rameters for one urn; the generating function describing the sequence of n distinguishable
urns for the same set of parameters is f(x)".

- As a consequence, the generating function describing the allocation of balls in a single



urn is €V : There is only one way to allocate k identical balls into one urn. The function
describing the allocation of balls into the n urns is ™

- If the situation in an urn can be partitioned in two situations, with associated gener-
ating functions respectively fi(x) and fy(x), then the function describing the complete

situation is f1(x) 4+ fa(x).

3.1 What happens in an urn?

We consider a finite sequence of n distinguishable urns, in which we throw balls inde-
pendently. The number of balls that an urn can receive is not bounded, and the balls
are assumed to be indistinguishable. The exponential generating function describing the
allocation of balls in an urn is then simply eV, with the variable y marking the number of
balls.

Now, assume that the balls are of two types (“good” and “bad”), with respective
probabilities 1 — p (good balls) and g (bad balls) (0 < g < 1/2). The generating function
describing the allocation of balls in a given urn can be written as e¥ = e*¥+(1-#)v,

The two types of balls lead to three possibilities for the urns : An urn is “good” if
there are more good balls than bad balls; it is “bad” if there is a majority of bad balls,
and “neutral” if there is an equal number of good and bad balls (possibly none, this case
includes empty urns).

This translates into generating functions as follows : “In a good urn, the exponent of
(1 — p)y is greater than the exponent of uy”. To capture this idea, we shall introduce a
new variable z, and substitute (1 — u)yz for (1 —p)y and pyz~" for uy : We get a function
of ¥ and z, which we write as a series on z :

y((=m)ztu/z) _ Z a,(y)=".
peZ

The positive powers of z indicate a good urn; the negative powers indicate a bad urn, and
the constant term (without z) a neutral urn.

The next step is to get an expression of the term ap(y). We shall use the relation

y(z+1/z) Z ]

pEZ

with I,(y) denoting a (modified) Bessel function : I,(y) = 3, (y/2)?*% /r!(r + p)! (see the
Appendix, Section 7.3, for a few properties of Bessel functions). Define o2 := u(1 — p);
we have that

exp<y[(1—ﬂ)z+g])=exp( [%‘F—]) S L(20y) (ﬂ)pzp;

pEZ

hence a,(y) = (o/u)?1,(20 y) and

P
eVli=m)ztu/z] — ZI 20y) ( ) 2P, (6)
i

pEZ
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For » = 1, we get ¢V == 3 c,[,(20y)(c/p)?, which we shall use to simplify some
computations in the sequel.

3.2 Balance of an urn

The balance of an urn is defined as the difference between the number of good balls and
the number of bad balls; this is the exponent of the variable z in Equation (6). As the
global cost is linear function of the costs of individual urns, the i moment of the global
cost can be determined thanks to the joint law of the cost of ¢ fixed urns. Hence, it is
relevant to determine those joint laws. Moreover it is easy; a straightforward derivation
or an approach by generating functions are equally successful.

Proposition 3.1 The vector of balances in urns 1.0 after throwing k balls in n urns is
distributed according to a law Q; that is with variational distance 2i/n from the law P; of
a vector of © independent random variables that are distributed as the difference between
two independent Poisson random variables with means pk/n and (1 — p)k/n.

Recall that the difference of two Poisson random variables with mean yp and y(1 — p)
has the same law as the random variable defined by first drawing an integer ¢ according
to the Poisson law of mean y, then drawing ¢ i.i.d. {—1,1}-valued random variable with
mean 1 — 2pu.

Recall also that conditionally on the number of balls allocated in urns 1...:, the
balances of the ¢ urns are independent. In the language of [4], this means that the o-field
generated by the number of balls allocated to the first ¢ urns is sufficient to compute
the variation distance between P; and @); ([4, lemma 2.4]). Hence the variation distance
between F; and (); is equal to the variation distance between the law of the vector of balls
allocated to urns 1...7 and a vector of ¢ independent Poisson random variables with mean
k/n. By theorem (5.1) in [4] which relies on previous results by Kersten, this is smaller
than 2¢/n. Notice that the latter quantity does not depend on k and p.

For large n and k, the law of the balance is asymptotically equal to

g

P
Pr(balance = p /a total ofk balls) ~ e™ (—) 1,20 «).
7

It is also possible to derive this expression from the generating function marking the
balance of an urn by z, and “forgetting” the state of the other urns : this function is
equal to fi(y,z) e" VY with fi(y,z) := Sopez(a/p)PI,(20 y)2z? describing what happens
in the urn under inspection, and e¥ describing each of the n — 1 other urns. The desired
probability is then

[y 2P fily, 2) e} kL (o\P o
y[y’“]{fl(y?fl) c-Duy T pk (;) [y ]{e" V1, (20 y)}.

This last coefficient can be estimated, for n — 400 and k = an, as (see Section 7.1)
enher (20 )

o/ 2man

7




The speed of convergence is of order 1/n; this can be proved, either by a result of Diaconis
and Friedman [4], or by the generating function approach : Each individual probability is
e (o/u)I,(20 a)(1 + O(1/n)) (the saddle-point approximation can be improved to give
a full asymptotic expansion, in the vein of Good’s extension of Daniels’s result [10]), and
summing these probabilities gives the result.

The same approach gives the joint distribution of the balance in a fixed number r of urns :
The probability that the first urn has a balance p;, the second urn a balance p,, ..., the
" urn a balance p,, when there is a total of k& = an balls, is

o p1t+...+pr
e (—) 1,20 a)... 1, (20 ).
7

3.3 The different states of an urn

Now we give the generating function describing the system of n urns, when we are inter-
ested no more in the balance of the urns, but simply in their states (good, bad or neutral).

Define

o) = 3 (2) pieen = 5 () e

p<0 p>0

oy) = Z(f) 1,(20y) = & — Io(20y) — 6(y).

p>0 \ M

Now we introduce a new variable for each possible state of an urn : wu is associated to
a bad urn, v to a neutral urn, and w to a good urn. We obtain the generating function
describing what happens in an urn, with y indicating the number of balls in the urn, by
substituting u to z? for p < 0, v to z° and w to 2P for p > 0 :

u Y ap(y)+vao(y) +w Y ap(y).

p<0 p>0

The generating function describing the possible states of an urn is

flu,v,w,y) == ue(y) + v lo(20y) + wib(y).

and the generating function describing the behavior of the system of n urns is (recall that
the generating function for a sequence of n urns is the n'* power of the function for one
urn)

Fu,v,w,y) = flu,v,w0,y)" = (uoly) +vilo(2oy) +wib(y))". (7)

3.4 The cost function

Now that we have described the basic model of allocation of balls in urns, and that we
have obtained in (7) the generating function marking the different possibilities for the n



urns, the next step is to associate a cost with each urn : We assume that the cost of an
experiment (throwing k balls into n urns) is a linear function of the numbers of urns of
each type:

Cost = Co- Number of neutral urns+Cy-Number of bad urns+Cy- Number of good urns.

We shall use the following notations :
o The cost of a neutral or empty urn is Co;
e The cost of a bad urn is Cy;
e The cost of a good urn is Cf.

Examples of costs relevant to learning theoretic applications are Cy = 1, C; = 2 and
Cy=0,0r Cy=1/2,Cy =1—p and Cy = p (we usually have Cy < Cy < Cf).

The cost of a realization of the scheme of allocations is defined as the sum of the costs
of each urn. To obtain its generating function, we start from the function F'(u,v,w,y)
given by Equation( 7), describing the state of the system of urns, and introduce the
variable z marking the global cost as follows : We substitute £ for v, 2“1 for u and 2
for w. We get

G(z,y) = g"(z,y) = (xCOIo(Za y) + 2o (y) + xcw(y))” . (8)

Up to a normalization, the coefficient [2Py*]G(z,y) is equal to the probability that, after
throwing & balls, the global cost is equal to p :

[Py |G, y) KL,y
m = ﬁ[l' y" G (x,y).

In the sequel, we shall assume that p is an integer, which allows us to use Cauchy’s

Proba(cost = p/k balls) =

formula and complex integration technics to get approximations of generating function
coefficients.

4 The static case

4.1 The average cost

The average cost is equal to [y¥]GL(1,%)/[y*]G(1,y). As G, = ng,¢"~", we have that
go(x.y) = Co 2 Io(20 y) + C1 7 6(y) + Co 7 (y).

Hence, with ¢(1,y) = €,

Go(ly) = ne"™D(Cy Iy(20 y)+01 </5( )+ s (¥ = Io(20 y) o(y))
= n[Cy ™ + (Co— Ca)e" V120 y) + (C1 — Ca)e" D¥g(y)].



As [¥F]G(1,y) = [y¥]e™ = n*/k!, we obtain the average cost as

n

k! k
v (C2g +(Co = Co)ly* "V Io(20y)} + (C1 — C2)[?Jk]{€(n_1)y¢(y)}) :
To obtain an asymptotic value for & = an, we apply the saddle-point method to the
evaluation of the coefficients [y*]{e" " Iy(20y)} and [y*]{e"D¥é(y)} (see again the
Appendix; Section 7.1); we get

Average cost ~n [Cg + (Co — Cy)e™1o(20 ) + (C — Cg)e_aqﬁ(oz)] )

4.2 Variance and limiting distribution

When the number of urns and the number of balls are proportional, the distribution of
the cost is asymptotically normal. There are several ways to prove it; for example we can
apply results by Bender and Richmond [2]; however, in order to use these results, we have
first to prove that the variance is of exact order n'. We shall use here another theorem,
given in [7, p. 278], that gives us directly the asymptotic value of the variance together
with the asymptotic normality; we recall it below.

Theorem 4.1 Let g(x,y) =2, % an 1 2*y™ be a function with positive coefficients a,j, and
entire w.r.t. y. Assume that the parameters k and n grow to infinity in such a way that
k/n — a >0, and that « satisfies

Jim g, (1y)/9(1,y) > a.

Let p be the unique real positive solution of the equation yg;(l,y)/g(l,y) = «a. Define

w(a,y) = 2g,(e,y)/9(x,y) and Na,y) = yg,(x,y)/9(x,y), and assume that, at (1,p),
/i;,)\;/ — /i;/)\;, #£ 0. Then the function f(z) = [y"[{g(x,y)"}/[y"1{g(1,y)"} is the generating
function of a probability distribution that is asymptotically normal; its asymptotic mean
and variance are L o

A, — K, A

p=nr(lp); o =n B0 )
Ay

In our problem, k(1,y) = e Y((Co — C2)1o(20y) + (C1 — C2)p(y) + C2¢¥) and we get back

the expression of the average cost when k = na.

Computation of the asymptotic variance

Applying Theorem 3.1, we get that the asymptotic variance is noi, with (p = o and
N(La)=1)
O-g = e—Of gac —I_ gac2 - e—Of ((gx)2 - a(gwy - 995)2)] ?

Proposition (3.1) immediately reveals that the variance of the normalized cost process should not
exceed O(1); thus the variance of the global process should be O(n). Tt is straightforward to check that
the normalized variance is the sum of one term corresponding to the variance of the cost of urn 1 -which
is obviously O(1)- and of one term corresponding to the covariance of the cost of urns 1 and 2, multiplied
by n — 1. By proposition (3.1), the covariance should be O(1/n).

10



where the derivatives of g are at (1, «). After some computations, and with the notations

dy :=Cy—Cy = Cost(bad urn) — Cost(neutral urn);
di :=Co—Cy = Cost(neutral urn) — Cost(good urn),

we get
oy = (do+di)’e ¢(a)+ dle (20 a)
— ((do + di)e™(a) + dye ™ Io(20 @)’
ta ((uldo + dv) = di)e ™ [o(20 @) — o (dy — dy)e 1120 @)

We sum up our results so far in the following theorem :

Theorem 4.2 Assume that the number n of urns and the number k of balls grow to
infinity in such a way that k = an for some constant o. The cost (generalization error)
is asymptotically normally distributed, with asymptotic mean and variance

E ~ n [Cg + die”Io(20 ) + (do + dl)e_aqb(oz)] :
ol ~ n [(do +dy)ed(a) + die " Io(20 a)
— ((do + dv)e™é(a) + dre ™ o(20 @)’

o ((ulds + i) = di)eIo(20 ) — o (dy — dh )™ To(20 oz))z] .

4.3 The influence of the ratio o = k/n

For our two examples of cost, we get
¢ When Cy=1,Cy =2 and (5, =0,
E[Costy] ~ ne™*(Iy(20 ) + 2¢(a))
and

o*(Costy) =n [e_a (In(20 @) + 4¢(a)) + e (a(l —2u)* — (Ip(20 o) + 2q§(oz))2)] :

o When Co=1/2,Cy =1 —p and Cy = g,

1 —2p

E[Costy] ~n(pu + 5

e (Io(20 a) + 2¢(a)))

and

¥ (Costs) = n (22)°[ ™ (Io(20 ) + 46())
+e7 (a(l = 20)” = (Io(20 @) + 26(a))?) ).

11



Note that E[Costy] = np + ((1 — 2p)/2) E[Costy]; the variances are similarly related :
o?(Costy) = (1/2 — pu)? o?(Costy).

In the two examples of costs we considered, the asymptotic average cost is of the
form nh(a) and the function h decreases when a grows. This is often satisfied : assume
that dy > dq > 0 (which is often the case in our learning problem). The average cost is
asymptotically equal to nh(a) with

h(a) :=Cy +die™16(20 ) + (do + dr)e™ ().

To study the variations of h(a), we compute its derivative h'(a); we use the fact that
o' (y) = o(y) +ulo(20 y)— o l,(20 y) (see the appendix, eq. 25) to get rid of the derivative
of ¢; we get

!

hi(a)=—oe ?[(do — d1)[1(20a) + (dio/p — dop) o) [o(20a)].
Hence, for dy < dy < di(1 — )/ p, h/(oz) < 0 and h(«) is a decreasing function of a. Now,

for do > dq(1 — p)/pu(> dy), h is first increasing, then decreasing; it has a maximum for «

such that
]1(20’0&) B ,u(do + dl) — dl

I(200)  o(dy— dy)

The function ¢ +— [1(t)/Io(t) is increasing on [0, +00[; hence the uniqueness of the solution.

The variance as a function of a:
We now consider the asymptotic variance as a function of a; we use the asymptotic

equivalents
20«

e
Viro «

(p=0,1) and (see Sections 7.2 and 7.3 of the Appendix)

1,(20a) = (1+0(1/1)

20

8la) =~ ———(1+0(1/1));

as 0 < 1/2, (=2 /\/irg a)? = o(e' =277 /(a/d7 o a)) and we get

ol = (d2 + L(al +d )2) ﬂ(l + O(1/a)) (9)
0= |4 — et h T :

g TO &

The equation (9) shows that the asymptotic variance (for large n and k) is exponentially

decreasing in o (modulated by 1//a).

5 The dynamic case

Our aim in this part is to prove that the process describing the cost can be precisely
characterized. The first step is to introduce a notion of time : We consider a discrete

12



time, and add a ball at each moment. The number of balls k is then equal to the time ¢; we
still assume that the number of balls is proportional to the number of urns : £ =1t = an.
The number of bad balls follows a binomial distribution of parameter p; this distribution

2

is asymptotically normal, with mean ky = ant, variance ku(1 —p) = ao?n and covariance

n(ty —t)p(l — p).

The cost is now a function of the time, i.e. a stochastic process : Cost(t). We shall
first compute the covariance at different times : Cov(Cost(t1), Cost(tz)). It is possible
to derive such an expression by elementary means (see Section 5.1); we shall also present
(in Section 5.3) a computation using the generating function describing what happens in
the urns at two different times ¢; and ¢5. This generating function is then used to prove
the gaussian behavior of the asymptotic bivariate distribution (Section 5.4). Such an
approach is inspired from what was done for the classical occupancy model [15, Ch. IV];
it is probably easier to generalize to higher dimensions that the direct approach.

5.1 The covariance

The fact that the balance in a fixed numbers of urns lends itself to an easy analysis
via the Poisson approximation (cf proposition 3.1) provides a safe way to determine the
asymptotic covariance of the cost process.

Let us adopt the following conventions: Z;(«) = number of balls in urn ¢ at time an ,

and in the sequel oy < ay, N(7, @) 21 (resp. M(7,«) 2 1) if urn 7 is neutral (resp. bad)
at time an, and 0 otherwise.
The global cost C'ost at time an is:

Cy + z_j ((Co — Cy) N(i,a) + (Ch — Cy) Mi(a)) . (10)

If the centered cost process is normalized by 1/y/n, then using the exchangeability of the
M; and N;, the normalized covariance can be written down as:

(Co — C2)* [ENy(a1) Ni(ag) — ENy(ay ) ENy(ag)]
+(Cy — C2)? [EMy(ay) My(ag) — EM; () EMy(az)]

(
H(Co = C1)(Cy = C2) [EMa(01) My (o) — BV (1) BN (o)
+EN, (o) My(as) — EN,(ar)EM, (as)
+(n—1) [(00 — (52 [EN;(a1) Ny(og) — ENy (1) EN;(az)] (11)
+ (C1 = C2)? [EMi(a1) Ma(as) — EM:(a1)EMs(az))]
+ (Co = C2)(Cr = C2)[EMy(a1) Na(az) — EMy(a1)ENy(az)
FEN(1a1)M(2,05) — EN(1, 1) EM(2, as)]
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The various expectations involved in the preceding sum can be identified with proba-
bilities of events occuring at different instants in possibly different urns. The computation
of the joint probabilities is facilitated by noticing that if we condition on the number of
balls that have been thrown in two distinct urns, the fates of those two urns are indepen-
dent. One should also notice that E(N(1,049)|71) and E (M(1, a1)|71) do not depend on
n.

Let us see how to compute the difference between the joint probabilities and the
product probabilities of two events concerning two different urns (say urn 1 and 2)).

EN(1,a1)M(2,a2) —EN(1,0q0) EM(2, a3)
= Yk, E(N(L, 01)[Z1) E (M (2, 02)|Z2)

(Pr {Zl(al) A Zafan) = k2} ~Pr {Zl(al) _ kl} Pr{Zg(ozz) _ kz})
(12

The fact that the variational distance between the occupancy law of two different urns
and the joint law of two independent Poisson random variables is O(1/n) already warrants
that the second summand in (11) (+(n — 1)[...] is O(1).

As all terms involving two distinct urns have this form, it is highly beneficial to
compute the first two terms in the development of

Ik, ky) 2 (Pr{Zl(ozl) — b1 A Zo(as) = k2} - Pr{Zl(ozl) _ kl} Pr {Zz(az) = kz})
when n — oo.

](kla k2) _ Zh§k2 (kolq—l_nh) (k12-h) ((ai;_aflb)n)(l . %)oqn—(krl-h)(l o %)azn—(kz—h) nk11+k2
ain) {(azn 1 1 — 1 ayntapn—(ki+kz2)
k1 ky ) nk1tko ( n)

using developments (29) in section 7.5 (13)
A —a a2 ok (k1—o1)(ao—ks)
= T T aan +o(1/n)
The conditional probabilities are:
le kl kl
B{N(, a1)|Zi(a1) =2k ) = | "™ (= 1)
1

k

E<M(17041) Zi(an) = kl) = (hl)ﬂh(l — ) (14)
h o k1<2h§2k1

Then straightforward computations using identities (28) in section (7.5) lead to the de-
termination of the second summand in (11). The computation of the joint probabilities
in the first summand has to be carried out on a case by case basis. Only the first term in
the development is required. Let us illustrate the problem on two situations computation
of E(N(1,a1) N(1,3) and E(M(1, a1) N(1, arg).

In the first case, there is no need to compute anything, since if N(1,aq) = 1, the
probability that N(1,as) = 1 is just the probability that there are as many good as bad
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examples from class 1 among the last (s — aq1)n examples. The latter quantity turns to

be Pr{N(1,az —ay)}. Hence

E(N(l, ar) N(1, a2)) _ E(N(l, al)} E(N(l, az))
e e [ (200y) (eallo(Za(ozg — ) — IO(ZUOQ)) (15)

In the second case, thanks to a reflection trick, there is no need to compute anything as
well. We will first show that:

E(M(l,al)N(l,az)) = Pr{urn 1 is good at oy A N(1, a2) = 1}. (16)

Let us assume that on some sample path S of the random allocation process, N(1,az) = 1
is realized. Now consider the sample S where the labels of balls allocated to urn 1 in S
have been flipped. Since N (1, a2)[S] =1, N(1, a2)[S] = 1, and moreover the two samples
have the same probability, and urn 1 is good at time ay on S iff urn 2 is bad at time a5 on
S. Hence when N(1,ay) is realized, there is a probability-preserving 1-1 correspondence
between the samples that are good at time ay and those that are bad at time o4 Finally:

E(M(l,al) N(1,a2)) _ E(M(l,al)) E(N(l,az))
R (%(10(200@) _ To(20a1)To(20 (s — a1))) — qﬁ(al)Io(anzz)) (17)

If we adopt the choice for Co = 1/2, C; = 1—p and Cy = g, the asymptotic covariance
of the normalized centered cost process between (normalized) times oy and ay is equal to

—an

4

[§

( (Io(QO'OéQ) + 2Ip(200q) Py — 1) + Xisoi50 (f)] L(2oar) ;i (20 (g — ozl)))
—e ™ (Io(Zaozl) lo(20a2) + 21g(200s) (1) + 210(2001 ) p(az) + (1) d(az)

+ a1[(1 = 2p)10(2001) 4+ o1 (2001)][(1 — 2p)lo(20a2) + 011(200z2)]))18)

5.2 Multivariate generating function

We assume here that the balls are thrown in two groups. The first group is thrown at
the time #; (or during the interval [1,7;]) and its balls are marked by y;; we shall use the
variable z; to help in distinguishing good balls from bad balls (see Section 3.1) : a good
ball is marked as (1 — p)y121 and a bad ball as py;/z;. Similarly, the second group is
thrown at the time ¢5 (or during the interval [t; + 1,%3]) and we use the variables y, and
z9 to mark its balls. The generating function describing the allocation of balls of the two
groups in a single urn is

eyl(ﬂ/zl+(1—ﬂ)21)‘|‘Z/2(M/Z2+(1—M)Z2)‘ (19)
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We shall use the variables wu;, v; and w; to indicate the state of the urn after throwing
the first group (¢ = 1) and the second group (¢ = 2) : an urn which is bad at time ¢; is
marked by wu;; if it is neutral it is marked by v;, and by w; if it is good. We rewrite the
function (19) as

eve (/=4 (1=m=) S (95, (ﬁ)

nez K
and we mark the state of the urn after throwing the first group of balls; we get

oz \" oz \"
e (/2 (1-m)z) [wl Z 1,20 y1) (—1) + v11o(20 y1) + us Z 1,20 y1) (—1) ] )
n>0 K n<0 H

Now we consider the second group of balls : we expand the term e¥>(#/2+0-#)22) substitute
z for z; and for zy, and get

we S L(20y) (20 y2) (%)W

n>0, peZ

+oilo(20 1) D 1p(20 y2) (%)p

pEZ

n+p
gz

D S ACATACAAY G B
n<0, p€Z H

The sign of the exponent of z, n 4+ p, determines the type of the urn at the time .
We first consider the case where the urn is neutral at the time #; : The factor of vy,

Sopez 1(20y2) (0 2/ p)?, becomes
a\"” o\’
U Z 1,20 y2) (—) + valo(20 y2) + w2 Z 1,(20 y3) (_) :
p<0 H p>0 a

Using the definitions of ¢(y) and ¥ (y), we get the terms relative to the variable vy :

v1uglo(20 Y1) o (y2) + v1velo(20 Y1) lo(20 ya) 4+ viwelo(20 Y1) (y2).

We now consider the case where the urn is good at the time ¢; : this corresponds to the
terms in wy. The coeflicient of w1, 3,0 ,ez In(20y1)1,(20 y2) (o Z/,u)n-l'p, becomes

n+p
o
Wsy Z 1,20 y1)1,(20 y2) (—) + vy ZIH(QO' y1)l_n(20 y2)
n>0, n+p>0 H n>0
o n+p
D SR ACATACA) Ca I
n>0, n+p<0 H

Now the coefficient of wyvy can be expressed simply in terms of the Bessel function [y
(see the addition formula (23) in the Appendix) :

120 0) (20 y2) = [Lo(20 (1 + y2) — Lo(20 y1) Lo(20 y2)] /2 =: AL(y1,y2)-

n>0
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Define
g P g " g P
Sy = Y L(2ow)l,(20y) (—) Y (2o ) (—) S (20 p2) (—);
n>0, n+p>0 H n>0 H p>—n H

then the coefficient of wywy is equal to S(y1,y2), and the coefficient of wyug can be
expressed in terms of Iy, ¢ and S. To do this, we simplify the term ¢ (y;) e¥> with the
help of the addition formula (22) :

yde” = Y L(2oy)l-u(20ys) (%)q

n>0,q9€7

= Z ]n(QO' yl)]q—n(QO- yz) (%)q + Z ]n(QO- yl)]—n(QO- y2)

q
o

+ Z 1,20 y1)1,—n (20 y2) (—) )
n>0,g<0 lu

The first sum of the right-hand side is equal to S(y1, y2), and the second sum to Al (y1, y2);
the third sum is the coefficient of wyuy. Hence the terms relative to the variable w; are

w1w2S (Y1, y2) + w102 AL (Y1, y2) + wiug(P(y1)e¥? — S(y1, y2) — Al (y1, y2)).

The contribution of the terms in u; (the urn is bad at the time ¢1) is similarly computed :

Define
T(y1,y2) == (1 +y2) — S(y1, y2) — Lo(y1) ¥ (y2):

then the terms including the variable uy can be simplified and we get
urws T (51, ya2) + urvs Al (g, y2) + waua(d(y)e = Ty, y2) — Al (y1,92))-

The multivariate generating function describing the behavior of a single urn at the times
t1 and t9 is thus

wleS(ylv yz) + wIUQA](ylv yz) + w1u2(¢(yl)€y2 - S(ylv yz) - A](ylv ?Jz))

Fo1walo(20 y1)1(y2) + vivalo(20 y1)Io(20 y2) + viualo(20 y1)d(y2)
Furwy T (y1, ya) + u1v2a AL (Y1, ya) + wrua(d(ys)e” — T(y1, y2) — Al(y1,2))-

For u; = v; = w; = 1 (we “forget” the state of the urn at the times ¢; and t3), we get
back the generating function describing the allocation of the two types of balls, which is
simply e¥ % If we consider the urn at the time 1 (uz = vy = wsy), we get

e (urd(y1) + vilo(20 Y1) +wip(y1)) = € f(ur, v1, w15 1).

If we consider the urn at the time 5 and forget its state at the time ¢ (u; = v1 = wy; = 1),
we get

Us (ey1+y2 — Io(20 (y1 +y2)) — (1 + yz)) + volo(20 (y1 + y2)) + warb(y1 + y2)

These formula could also be derived directly, by marking directly the parameters of
interest in suitable generating functions.
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5.3 Another derivation of the covariance

The bivariate generating function that we have just computed describes what happens in
the urns at two different times, and we can use it to compute the covariance. First, we
get the multivariate generating function of the cost at two different times : We use the
variables x1 and x5 to mark the cost at the times ¢; and #5; the variables y; and y, are used
to mark respectively the number of balls at the time #; and the number of balls added
between t; and t3. The function H(x1,xq,y1,y2) is, as before, equal to h(xy, x2,y1,y2)",
with A describing what happens in an urn : A is obtained from the multivariate function
& for v; and 2 for w; (i =1,2); we get

in u;, v; and w; by substituting :1;2»01 for w;, x;

h(xlvx%ylvy?) =

w2252 S (g1, y) + af %OAJ(yl,yz) + 27?2 (byr)e” = Sy, y2) — Al(y1, 12))

‘|'$1 51;22]0(20 Y1) (y ) + 51/'1 51;20]0(20 91)10(20 y2) + 51/'1 51;21]0(20 y1)o(y2)

a2 T (g, y2) + 27 0 Al (y1, y2) + 27 25 (S(y1) e — Tyr,y2) — Ay, y2)).
We then use this function as follows : Let C'ost; and Costy be the costs at two different
times t1 and t3 (#1 < t3). The covariance is defined as E[Costy-Costy|— E[Costy]- E[Costy).
The expectation of the cost at a time ¢;, knowing that we throw k; balls up to the
time ty, is easily computed from the generating function Gz, y) for the cost, given by the
equation (8), as [y™ ]G (1,y)/[y*]G(1,y) (see Section 3.1). Similarly, the expectation of
the cost at a time ¢3, knowing that we throw ky balls in the interval ]t1,15], and a total

of ki + ky balls, is [y*15]G (1, y)/[y*2]G(1,y). Now the expectation of the product,
given that we throw &y balls in the interval ]0,¢;] and k; balls in the interval ]¢1, 2], can

[?Jklyb]H;m(l L, y1,92)
[y*y*]H (1,1 yl,yz)
Of course, [y*1y™21H(1,1,y1,y2) = 1/(k1!ks!). Now me =nh, K" '4n(n—1)h, h h""?

T1L2 1 T2

be obtained as

E[Costy - Costy] =

and we get an expression for Hxlm(l, 1,y1,y2). We can obtain the covariance by taking
the derivatives of H for #; = x5 = 1, then extracting the coefficients (we shall need a
second-order approximation for the ones that have a multiplicative factor n(n—1); a first-
order approximation suffices for those terms that have a multiplicative factor of order n),
then injecting these approximations in the expression for the covariance; this approach
requires also that we get a second-order approximation of the expectations (the first-order
terms have a multiplicative factor of order n? and are canceled by the terms with a similar

weight in F[Costy - Costsy]).

5.4 Bidimensional distribution

We show now that the bi-dimensional distribution is asymptotically normal.
To do this, we shall show that the characteristic function of the normalized costs
converges towards the characteristic function of a bivariate normal distribution. Define

£ = Cost; — E[Costy] £ = Costy — E[Cost,]
1= \/ﬁ ; 9 1= \/ﬁ .
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The bivariate characteristic function of & and &, is obtained from the generating function
of the costs H(x1,x2,y1,y2) (see Section 5.3) as

) ki ko
— (11 E[Cost1]|+t2 E[Cost Yimy i i n
Foo e (o ty) = ¢~ vRtnEICo B Cost:]) [kll' é’] (1 (7 I )Y

We have thus to evaluate the coefficient [yfl y§2] {h (e“l/ﬁ, eIV yz)n}. To do this,

we shall use, as we did before when we met coefficients of the n** power of a function, a
saddle-point approximation. We write the coefficient as

1 y? ; ; n o dy;  dys
el b (/v it/
(2“_‘_) ff (6 , € 7y17y2) yiﬂ-l-l y§2+17

and we use for integration contours two circles centered at the origin, and passing through
the saddle points, i.e. whose radii r; and ry are the respective solutions of the equations
ylh;l/h = (k1 +1)/n and ygh;2/h = (k2 + 1)/n. We do not need to solve exactly these
equations : To show the convergence of the characteristic function towards the charac-
teristic function of a bidimensional distribution, we shall let n — +oco; hence e™/V? — |
and e™/V" — 1, and we can choose for approximate saddle points the solutions of the
equations ylh;ﬂ(l,1,y1,y2)/h(1,1,y1,y2) = ki/n and ygh;2(1,1,y1,y2)/h(1,1,y1,y2) =
ky/n. These solutions are r1 = oy and ry; = a3, and we integrate on the contours
{yy = e, -7 < 0 < 7} and {ys = ae’®, —7 < 0, < 7}. Now the integral for
|01] < 7,]0,] < 7 can be broken into two parts : the central part is for |0y, |0;| < logn/\/n,
and gives the main contribution to the integral; the remainder gives error terms. The
main point is that the derivatives of second or third order of H, at or around the point
r1 = x9 = 0, are of order n. We do not give here the detailed computations, which are
rather cumbersome; the interested reader can go back to [15, p. 167-170] or to [8, p. 402-
408], where similar bivariate methods are applied to the same kind of problem, namely
to study limiting distributions through their generating function.

A similar approach can probably be used to prove that the finite-dimensional distributions
are asymptotically normal; however we have first to get the generating function for a finite
number of costs. Although this poses no theoretical difficulty, the number of terms of the
generating function for p costs is 37, which makes it difficult to write the function in a
pleasant form.

6 Conclusion and extensions

We have presented a new urn model to study the generalization error in learning symmetric
functions with noise.

From the initial learning-theoretic viewpoint, this detailed analysis reveals that a typi-
cally exponential learning curve can undergo subtle distortions when random classification
noise is introduced : the generalization error is no more a simple exponential but the prod-
uct of an exponential with series of Bessel functions. This would have been difficult to
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characterize in numerical simulations, though the fact that noisy learning curves are no
more simple exponentials was already apparent.

We have shown the gaussian behavior of the limiting distribution and process, when
the number of balls & and the number of urns n are proportional. It should be noted
that the relation is not strict : our results can probably be extended to k/n belonging
to a closed interval of ]0,4+oc[ (the central domain of [15]). However, when n and k
no longer have the same growth rate, we can expect a different behavior. The analogy
with the empty urns model suggests that, for example, we might get Poisson results for
k = nlogn. Possible extensions also include the waiting time until some cost is reached,
i.e. until the error of the learning process becomes smaller than some bound.

The generality of that pattern of fluctuations in learning problems remains to be
assessed.

We believe that another contribution of our paper is the presentation of a new kind
of admissible construction : the majority phenomenon that comes from building a com-
binatorial structure on two types of objects (good and bad in this paper), then deciding
on the type of the structure according to the type of the majority of the basic objects.
For example, we can have two types of basic objects, build cycles on theses objects and
combine these cycles into a set, then ask for the number of cycles of the set that have a
majority of elements of one type, or an equal number of elements of each type. It should
be possible to extend the distribution results on the number of components presented by
Flajolet and Soria [5] to study the number of components of a given type (good, bad or
neutral) for various combinatorial constructs.
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7 Appendix

We give in this part some mathematical results that we need for our analysis : asymptotic
expansions at order 2 for coefficients of functions of the type ¢ f(y), basic facts on Bessel
functions, and some properties of the function ¢ defined in Section 3.3.

7.1 Asymptotic expansions

We need in several places of our computations the first terms of the asymptotic expansion
of a coefficient of the type [y*]{e™ f(y)}. This is basically a special case (for g(y) = €¥) of
a variation on a coefficient of the type [y*]{g(y)"}. Such coefficients were studied, when
n and k grow to infinity while staying (roughly) proportional, by Daniels [3], who gave
the asymptotic equivalent, and by Good [10], who extended the results of Daniels to get
a full asymptotic expansion. In [9], we presented an extension of Daniels’s result to allow
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for a factor f(y) of slower growth rate, which is the case if f(y) does not depend on n at
all. All these papers use a saddle point approximation, which we can adapt to deal with

coefficients [y*]{e"=¥ f(y)}. We get

(=)o f (@) (1 . 42 1 1 ) |

) = S ()

Wi/th a=kFk/nand e =14 aa—of(a); 6f(y) = yf'(y)/f(y) and r(a) = f”(oz)/f(oz) -
(f/ () + (k+1)/a*

7.2 Bessel functions
We refer the reader to the book by Whittaker and Watson [21, Ch. 17] or the treatise by
Watson [20] for detailed information.

Definition
] 1 1 2r+n
=S —— (= .
(t) ZT: rli(r 4 n)! (2)
The summation is for r > 0 if n > 0, and for » > —n if n < 0. Note that I_, = [,. We
use mostly the functions

W = X(s)"

r>0
1 1 2r4+1
Ly = S —m— (=) .
1t) ;r!(r—l- 1)! (2)

Derivatives of Bessel functions

L) = L(t)+ T1(1) = : , (20)
L4100 = (04 0, )
In particular, I, = Iy and I;(t) = I,(t) + (1/t)I;(1).
Addition formulae
Z:Z]n(x)]q—n(y) = Iy(z +y) (22)
For ¢ =0,
S 1)) = o+ 23)

Asymptotic behavior
For real t — o0,

el 4n? — 1 1
I, (1) = 1 — — .
(*) 27t ( 3t +0 (tQ))



7.3 The function ¢(y)
We recall that the function ¢ is defined as a (weighted) sum of Bessel functions :

o) =X (£) 1w, 24)

p>1 N7

An alternative definition uses the Lommel functions (see [20, p. 537])

Un(w,z) = Y (=1)"(w/2)" " Jupam(2),

m>0
with J,(z) the classical Bessel function (I,(y) = (—¢)?J,(1y)) :
O(y) + Lo(20y) = Up(—2ipy, 20 y) + iUr(—2ipy, 20 y).

The function ¢ is increasing.

Asymptotic behavior

For y — 400 :
62cry Iu 1
~ K ith K = = .
o(y) ey M p— =

Remark : the factor K is equal to 0 for g = 0, is increasing with p, and becomes infinite
when p — 1/2.

Sketch of proof :
The proof begins with the equality

1 oo
ez(uta) = > uPl(z).

p=—00

Hence 1,(z) = [u?]{ez(+0)} = (1/2ix ) § e/D@H1/w)y ==Ly and we obtain an integral
representation of ¢ for t = p/o €]0,1] :

1 tr
oy) = — j{ e vuty) Z o du = j{eh(y’“)du

2 o1

with h(y,u) = oy(u + 1/u) +log(t/(u(u — t)). The integration contour circles around ¢;
the saddle point heuristic suggests that we choose as contour a circle of radius the value
of u that cancels h;(y, u). For large y, this value is close to 1 and we choose for integration
contour the circle {u = ¢, —7 < § < 7}. The details can be worked out without any
major difficulty and we obtain the asymptotic value of ¢(y). If desired, the saddle point
method can give more terms of the expansion.
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Differential equation
The function ¢ satisfies a linear differential equation, which can be used to give an expres-

sion of the derivative ¢'(y). We simply derive the relation (24) and use the equality (20);
we obtain

¢ (y)=oy) +u lo(20 y) — o [,(20 y). (25)

Define z = 20 y and ¢1(2) = ¢(z/20); ¢1 is a solution of the differential equation
20 6,(2) = ¢1(2) + plo(z) — o 11 (). (26)
We seek a solution of the type ¢1(z) = ¢*/270(2), with

1
0'(2) = L= () — SeT ().

20
Now I1(z) = ](l)(z) and fe_z/%]l(z) = 6_2/2010(2) + (1/20)[6_2/2010(2). This gives the
general solution

1—-2 z 1
bi(z) = —— M afe / e Ly (1) dt — =Io(2) + el
4o 0 2

The constant C' is chosen such that ¢(0) = 0; hence C' = 1/2 and we get an expression
for ¢ :

o(y) = %(ey — Ih(20y)) — %(1 —2pn) e 0o(20y) with Op(z) = /OZ e ' Io(20t)dl. (27)

The asymptotic expression of ¢(y) together with the expression of ¢'(y) in terms of é(y)
give, for y — 400,
20y

¢/( ) 2000 e
Y o—p \Airoy

The second derivative of ¢ satisfies the following relation, which helps to simplify some

expressions in the computation of the variance :

1

¢ (y) = oy) + 1’ l(20y) + (20— L)o [(20y) — * L(20y).

7.4 Identities

The following identities prove useful during the derivation of the covariance.

Zo<h h'h' (Zh) _203/11(20?/)

Soc FE ((20) = (20) = 209) (20 yo(209) — Li(20y))

h o b+l
2 0<het % (h+1)=y a%( )

1 (q1_ ,\h,h+l 2
ZOSMI — hﬁ;! s ((h + l) (h ‘|‘ l)) = 312 7 ;5;2(11)
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7.5 Applications of Stirling’s formula

Development to the second order of

1 yn! Tk
— 7 (1= )"
nk(yn—k)!( n)

when n — oo:

yr: —2kr K —k

yke—”/ L 2n B 2ny
2k — 2k)?
* %55— 3 (W;T)>
(g g = R+ (1) (29)
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