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ABSTRACT: We study a system of m urns, where several types of balls are thrown, and an
additive valuation is assigned to each urn depending on its state. Examples are the join models
studied in a database context, and some models with two types of balls. The object of our
investigation is the evolution of the valuation with time, when a ball is thrown at each time unit. By
means of a generating function approach we show the weak convergence of the valuation process
to a Gaussian field. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 24: 75–103, 2004

1. INTRODUCTION

Our main motivation is the analysis of specific random allocation models that have been
proposed to study the dynamical behavior of relational databases. In particular, the second
author introduced urn models to study the so-called sizes of relations obtained by
projection or joins [8, 9]. The projection model is a generalization of the empty-urns
model (see [15] for a detailed presentation of this last model, both for the asymptotic
distribution and for the limiting process under a large set of assumptions), and in [6] we
gave an analysis of the asymptotic process in a restricted dynamic case (where balls are
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added one at a time and no deletions are allowed). The present paper has its origin in more
involved models which are related to joins, or where deletions in the database are allowed.

The join operations in a database are basically obtained by making the cartesian
product of two tables and applying a restriction on the result. Let us assume that we have
two tables T1[X, Y] and T2[X, Z], each with two columns: The equijoin of T1 and T2 might
be defined as the cartesian product T1 � T2, restricted to keep only those quadruples (x1,
y, x2, z) such that x1 � x2. The semijoin of T1 with T2 is (best) defined as the set of couples
(x, y) such that there exists some couple (x, t) in T2. The importance of the equijoin comes
from the fact that it allows to build “new” data from data already present in the database;
however, equijoins are prone to creating large tables, which is not recommended if one
desires the database operations to be executed quickly. Semijoins appear when selecting
data to be transmitted from one place to another, in a database distributed over several
places. In both cases, it is important that the database optimization system, which can
rewrite a query from the end user in several ways, and must then choose a “best” way,
evaluates the sizes of the tables created by a join operation.

Roughly speaking, the modeling of join sizes by urn models is as follows (see [8, 9]
for the precise definitions and models). Let us consider a table T1(X, Y), which will be
joined to a table T2(X, Z) on column X. The values on Y have no influence on the join, as
long as they belong to the relevant domain with the right (for the underlying database
problem) probability distribution and there are no repetitions. Hence we deal with some
number of distinct X values among all the possible values for X (in a database context,
there are usually a finite, if large, number of such possible values) and their numbers of
occurences. Now let us consider a sequence of urns, labeled by the possible values for X:
We associate with each tuple (x, y) a ball that goes into the urn labeled by x. We can do
this again for the next table T2(X, Z), using balls of a different type. The numbers of balls
of each type are exactly the sizes (i.e., numbers of rows) of the initial tables T1 and T2.
Usually, these sizes of tables are parameters of the database, or at least can be known
precisely (there is no randomness there). Finally, we represent each tuple of the (equi- or
semi-)join by a ball of a third type, according to the rules given below (from the definition
of the join operations, we can build tuples for the join by considering the X values
separately, i.e., by taking each urn in turn and investigating its contents). The number of
balls of the last type is precisely the join size that needs to be evaluated.

Such urn models have turned out to be of interest in their own right as combinatorial
objects; they can also be applied to completely different fields, e.g., to biological
problems, etc. (see [13], in particular Sections III.2 and VI.2. as well as Chapter V, pp.
239–248).

A mathematical formulation might be as follows. Consider a sequence of m urns into
which we throw different types of balls according to some rules. The balls are thrown one
at a time and independently. Moreover, we assume that the balls of one type are
indistinguishable. Assign to each urn U containing ki balls of type i, i � 1, 2, . . . , d, an
integer valued valuation f(k1, k2, . . . , kd) � 0. We are interested in the random variable
Xm equal to the sum of all valuations. If we denote by Kij the number of balls of type i in
the jth urn, then we have

Xm � �
j�1

m

f�K1j, . . . , Kdj�, (1.1)
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where we condition on ¥j�1
m Kij � ni, i � 1, 2, . . . , d. This formulation allows us to present

a unified treatment of both the join models and of several urn models previously
encountered:

● Semijoin and equijoin models in dynamical databases, where we have two types of
balls and the valuation is the join size:

f�k1, k2� � �k11�k2�0� for the semijoin,
k1k2 for the equijoin.

A first study of the dynamic behavior of join models was presented in [11], where
each case required an ad hoc treatment.

● Urns with balance q: There are again two types of balls. The balance of an urn is the
relative difference between the numbers of balls of each type, and the valuation is the
number of urns with the specified balance: f(k1, k2) � 1[k1�k2�q]. Such models were
introduced in [3] to study the behavior of a learning process; they also appear in [6].
The model we consider in the present paper differs somewhat, in that here the
number of balls of each type is known, whereas the former study assumed that only
the total number of balls was known.

● It should be mentioned that the general urn model previously studied by the authors
in [6] also fits into this scheme: There we (in most cases) had one type of balls, and
we counted the number of urns in a certain state C. For these urn models the function
f can be defined by

f�k� � �1 if the urn is in state C,
0 otherwise.

We shall prove in this paper that the (normalized) process Xm � Xm(n1, . . . , nd) with
a specified number ni of balls of each type i � 1, 2, . . . , d converges weakly, as m3 	
and (n1, . . . , nd)/m tends to a fixed vector (t1, . . . , td), towards a Gaussian field (with time
variables ni/m), whose covariance function can be explicitly computed.

In fact, our main result (Theorem 2.1) is even more general. It just refers to properties
of corresponding generating functions defining the process. For example, this result can be
also applied to model deletion of balls. The source of our interest in such a model comes
again from databases, that are now dynamic, i.e., the user can add or delete items.

The plan of the paper is as follows. In Section 2 we show that the above urn model can
be encoded in terms of generating functions and we formulate our main result concerning
the convergence of Xm towards a Gaussian field. We study several examples in Section 3
(join and balanced urns models); for example, the equijoin leads to the Brownian sheet.
Section 4 introduces a model for deletions and validates this approach on an empty-urns
model. Finally Section 5 gives the proof of our theorem.

2. CONVERGENCE TO A GAUSSIAN FIELD

2.1. Generating Functions for the Urn Model

First, let us consider the motivation urn model described in the Introduction.
We assume that there are d types of balls which are thrown into m urns. First let us
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consider just one urn and let an1,n2, . . . ,nd
denote the number of ways ni balls of type i �

1, 2, . . . , d can be allocated in one urn. Then the exponential generating function1

describing the allocation of balls in one urn and marking the valuation of this urn with x
is given by

�1�x, z1, . . . , zd� � �
n1, . . . ,nd�0

an1,n2, . . . ,nd

n1!n2! · · · nd!
xf�n1, . . . ,nd�z1

n1 · · · zd
nd.

In the standard model one has an1,n2, . . . ,nd
� 1 and hence the function

�1�1, z1, . . . , zd� � ez1ez2 · · · ezd

splits into a product of exponential functions. Another example—which is frequently used
in this paper—is

an1,n2, . . . ,nd � �
i�1

d

�i��i � 1� · · · ��i � ni � 1�,

which means that every urn has exactly �i possible places for balls of type i � 1, 2, . . . ,
d. Here we get

�1�1, z1, . . . , zd� � �1 � z1�
�1�1 � z2�

�2 · · · �1 � zd�
�d.

Note that in general there are no factorizations like that.
If we denote (as above) Xm(n1, n2, . . . , nd) the (additive) value of these m urns, where

ni balls of type i, 1 � i � d, have been thrown, then by additivity we have

E�xXm�n1,n2, . . . ,nd�� �
�z1

n1 · · · zd
nd��1�x, z1, . . . , zd�

m

�z1
n1 · · · zd

nd��1�1, z1, . . . , zd�
m .

In a similar way we can also consider the joint distribution of the valuations of Xm(n1),
Xm(n1 � n2), . . . , Xm(n1 � n2 � . . . � nb) for some b � 1, where nj � (n1j, . . . , ndj),
j � 1, . . . , b. Let an1,n2, . . . ,nb

denote the number of ways to allocate first ni1 balls of type
i � 1, 2, . . . , d, then ni2 balls of type i � 1, 2, . . . , d, etc. and set

�b�x1, x2, . . . , xb; z1, . . . , zb�

� �
nij�0

1�i�d,1�j�b

�
j�1

b �xj
f�n11�· · ·�n1j,n21�· · ·�n2j, . . . ,nd1�· · ·�ndj� �

i�1

d an1, . . . ,nb

n1j! · · · n1j!
zij

nij� (2.1)

with zj � (z1j, . . . , zdj). Then we have

1We will apply the generating function technique for combinatorial enumeration (for an introduction to this
method, see, e.g., [7, 12]).
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E�x1
Xm�n1�x2

Xm�n1�n2� · · · xd
Xm�n1�n2�· · ·�nb�� �

�z1
n1 · · · zd

nb��b�x1, x2, . . . , xb; z1, . . . , zb�
m

�z1
n1 · · · zd

nb��b�1, 1, . . . , 1; z1, . . . , zb�
m .

(2.2)

For example, for the standard model we get (for x1 � . . . � xb � 1)

�b�1, . . . , 1; z1, . . . , zb� � �
j�1

b �
i�1

d

ezij � �
j�1

b

�1�1, zj�.

For the second mentioned model we have a nice representation, too, (for x1 � . . . � xb � 1)

�b�1, . . . , 1; z1, . . . , zb� � �
i�1

d

�1 � zi1 � zi2 � · · · � zib�
�i,

but we do not have a factorization of the form �b � �1
. . . �1.

2.2. Main Result

The nature of 
1(x, z1, . . . , zd) (i.e., an mth power) allows a straightforward application
of proper limit theorems (e.g., Bender and Richmond [1]), which directly shows that
(Xm � E Xm)/�Var Xm has a Gaussian limiting distribution where expected value
E Xm(n1, . . . , nd) and variance Var Xm(n1, . . . , nd) are both of order m (if ni and m are
proportional). The idea is now to approximate Xm(n1, . . . , nd) by

Xm�n1, . . . , nd� � E Xm�n1, . . . , nd� � �m � G�n1/m, . . . , nd/m�,

where G(t1, . . . , td) is a proper Gaussian field. The following theorem shows that this can
be actually worked out. Note that Theorem 2.1 just refers to very general properties of
generating functions and is thus applicable in more general situations which need not be
related to urn models.

Theorem 2.1. Let Xm � Xm(n1, . . . , nd) (m � 1, ni � 0 integers) be a sequence of
discrete stochastic processes, such that for every b � 1 there exist functions

�b�x1, x2, . . . , xb; z1, . . . , zb�

which are analytic for zj � (z1j, . . . , zdj) around 0 and 2d � 2 times continuously
differentiable with respect to (x1, . . . , xd) around (1, . . . , 1) such that

E�x1
Xm�n1�x2

Xm�n1�n2� · · · xd
Xm�n1�n2�· · ·�nb�� �

�z1
n1 · · · zd

nb��b�x1, x2, . . . , xb; z1, . . . , zb�
m

�z1
n1 · · · zd

nb��b�1, 1, . . . , 1; z1, . . . , zb�
m

(2.3)
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and

�2�x1, x2; z1, 0� � �1�x1x2, z1�. (2.4)

as well as

�z1
n1 · · · zd

nb��b�1, 1, . . . , 1; z1, . . . , zb�
m � 0 (2.5)

for all ni � 0.
Then there exists a centered and continuous Gaussian field G(t), t � (t1, . . . , td) � T°

(where 0 � T � �d is a proper connected set, see below) such that the following
functional limit theorem holds:

Ym�t� :�
Xm� mt1 , . . . , mtd � � E Xm� mt1 , . . . , mt2 �

�m
¡
w

G�t�

If Bs,t denotes the covariance function of G(t), then

Cov�Xm�n1, . . . , nd�, Xm�ñ1, . . . , ñd�� � mBn1/m, . . . ,nd/m;ñ1/m, . . . ,ñd/m � O�1�

uniformly for m, ni, ñi3 	 such that ni/m resp. ñi/m are contained in a fixed compact set
contained in T°. Furthermore, there exists a continuous function 	t, t � T° such that

E Xm�n1, . . . , nd� � m	n1/m, . . . ,nd/m � O�1�,

uniformly for m, ni3 	 such that ni/m are contained in a fixed compact set contained in
T°.

Remark 1. Note that the analyticity conditions imposed on �b imply that the multivariate
moment generating function of (Xm(n1), Xm(n1 � n2), . . . , Xm(n1 � n2 � . . . � nb))
exists and is 2d � 2 times continuously differentiable in a neighborhood of 0.

Remark 2. We want to mention that the univariate case (d � b � 1) for the standard
model [i.e., �1(1, z) � ez] has been investigated quite early in the literature, e.g., by Quine
and Robinson [16]. They proved a (univariate) central limit theorem for Xm(n) under very
general moment conditions (which are much weaker than our analyticity conditions).
Their method is based on the observation that Xm(n) may be considered as the sum ¥j�1

m

f(Uj(n/m)) conditioned on ¥j�1
m Uj(n/m) � n, where Uj(t) denote independent Poisson

random variables with parameter t. (With help of this interpretation it is also quite easy to
interpret mean and variance of Xm(n) in terms of moments of Uj(t) resp. of f(Uj(t));
compare with [16]).

In order to describe the Gaussian field G(t) in Theorem 2.1 we just have to provide the
covariance function Bs,t and the set T. The formulas for Bs,t (and 	t) we present here
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depend on saddle point equations (2.6) and (2.7) (resp. on (2.10)) and do not explicitly
refer to the distribution of Kij as it has been done in [16].2

Let 
2(x1, x2; z1, z2) be given. For s � (s1, . . . , sd) and t � (t1, . . . , td) with 0 � si 

ti, i � 1, 2, . . . , d, let �1 � �1(s, t) � (
11, . . . , 
d1) and �2 � �2(s, t) � (
12, . . . , 
d2)
be defined by


i1

��2�1, 1, �1, �2�

�zi1
� si�2�1, 1, �1, �2�, i � 1, . . . , d, (2.6)

and by


i2

��2�1, 1, �1, �2�

�zi2
� �ti � si��2�1, 1, �1, �2�, i � 1, . . . , d. (2.7)

We will denote by T the set of all t such that �1(s, t) and �2(s, t) exist for all s with 0 �
s 
 t.

Now set

�ab

:�
�2�log �2�e

u1, eu2, 
11e
v1, . . . , 
d1e

vd, 
12e
w1, . . . , 
d2e

wd��

�a�b
�

u1�u2�v1�· · ·�vd�w1�· · ·�wd�0

,

where a, b � {u1, u2, v1, . . . , vd, w1, . . . , wd}), and we obtain

Bs,t �

	
�u1u2 �u1v1 · · · �u1vd �u1w1 · · · �u1wd

�v1u2 �v1v1 · · · �v1vd �v1w1 · · · �v1wd
···

···
···

···
···

�vdu2 �vdv1 · · · �vdvd �vdw1 · · · �vdwd

�w1u2 �w1v1 · · · �w1vd �w1w1 · · · �w1wd
···

···
···

···
···

�wdu2 �wdv1 · · · �wdvd �wdw1 · · · �wdwd

	
	
�v1v1 · · · �v1vd �v1w1 · · · �v1wd

···
···

···
···

�vdv1 · · · �vdvd �vdw1 · · · �vdwd

�w1v1 · · · �w1vd �w1w1 · · · �w1wd
···

···
···

···
�wdv1 · · · �wdvd �wdw1 · · · �wdwd

	
. (2.8)

2If we consider the urn model Xm � ¥j�1
m f(K1j, . . . , Kdj) conditioned by ¥j�1

m Kij � ni then, for given m and ni

we can choose properly scaled Kij such that ¥j�1
m E Kij � ni. This relation is hidden in the (univariate) saddle

point equation (2.10). Thus, if one is interested in the asymptotics of E Xm and Var Xm, this can be worked out
in the same vein as in [16]. However, for the covariance we need the joint distribution (Xm(n), Xm(ñ)) and two
(differently) scaled versions Kij and K̃ij with ¥j�1

m E Kij � ni and ¥j�1
m E K̃ij � ñi which are encoded in (2.6) and

(2.7). This would lead to a probabilistic—however, not really elegant—interperation of our formulae.
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For general s, t � T we set Bs,t � Bmin(s,t), max(s,t).
Furthermore, we have

	s �
��/�x��1�1, ��s��/�x

�1�1, ��s��
, (2.9)

in which �(s) � (
1, . . . , 
d) denotes the solution of the equation


i

��1�1, ��

�zi
� si�1�1, ��, i � 1, . . . , d. (2.10)

Remark 3. Note that the covariance function Bs,t is just defined if si � ti for all i � 1,
2, . . . , d. However, we will see in the proof of Theorem 2.1 that it extends continuously
to the missing values si � ti. Especially we have

Var Xm�n1, . . . , nd� � mBn1/m, . . . ,nd/m;n1/m, . . . ,nd/m � O�1�.

Furthermore, Bs,s is a little bit easier to calculate than Bs,t.

Bs;s � 	s �

	
�̃uu �̃uv1 · · · �̃uvd

�̃v1u �̃v1v1 · · · �̃v1vd
···

···
···

�̃vdu �̃vdv1 · · · �̃vdvd

	
��̃v1v1 · · · �̃v1vd

···
···

�̃vdv1 · · · �̃vdvd

� , (2.11)

where �̃yz (y, z � {u, v1, . . . , vd}) is defined by

�̃y,z :�
�2�log �1�e

u, 
1e
v1, . . . , 
de

vd��

�y�z
�

u�v1�· · ·�vd�0,

and �(s) � (
1, . . . , 
d) is defined in (2.10).

Remark 4. We also want to mention that the formula for Bs,t is much simpler if

�b�1; z1, . . . , zb� � �
j�1

b �
i�1

d

ezij,

which we usually refer as the standard model. Here we have �1(s, t) � s and �2(s, t) �
t � s and

�u1wj � 0 �1 � j � d�, (2.12)

kviwj � �wjvi � 0 �1 � i, j � d�. (2.13)
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3. JOIN AND BALANCED URN MODELS

As discussed in the Introduction, some important cases appear when studying join sizes
or balanced urns. We specify now the results of Theorem 2.1 for these cases. We consider
the case d � 2 and models with factorization, i.e., where we have

�1�1, y, z� � g1�y�g2�z�, (3.1)

and give explicit results for equijoins and semijoins, and for balanced urns which
generalize those in [3, 8, 9, 10]. (For the sake of brevity we will calculate the covariance
function explicitly only for the standard model of infinite urns.)

3.1. Equijoin

For the equijoin models we have two types of balls and the valuation f(k, l) � kl. Thus
�1(x, y, z) � ¥k,l akblx

klykzl with g1(y) � ¥k aky
k and g2(z) � ¥l blz

l and hence (��1/�x)(1,
y, z) � yg�1(y)zg�2(z). Throughout this section set si :� ni/m for i � 1, 2, where ni denotes
the number of balls of type i. We give results for the four cases, where the urns are either
bounded or unbounded w.r.t. balls of type 1 and 2. Denote these models by UU, UB, BU,
BB, where the ith letter indicates whether the urns are bounded (by �i) or not w.r.t. balls
of type i. Inserting the generating functions into Theorem 2.1, we get the results in Ta-
ble 1.

In a similar way we can calculate the covariance function. For example, in the case of
infinite urns we have Bs1,s2;t1,t2

� s1s2 if s1 � t1 and s2 � t2. Hence the limiting process G
is precisely a Brownian sheet (cf. [18]; see also Fig. 1).

3.2. Semijoin

We now turn to the semijoin. By f(k, l) � k1[l�0] we have

�1�x, y, z� � g1�y� � g1�xy��g2�z� � 1�,

where g1 and g2 are chosen as for the equijoin models UU, UB, BU, and BB, respectively.
Thus we get the results in Table 2 (cf. Fig. 2 as well).

The generating function for the 2-dimensional distributions is 
2 � �2
m, where

�2 � g1�y1 � y2� � g1�x2y1 � x2y2��g2�z2� � 1�

� g1�x1x2y1 � x2y2��g2�z1 � z2� � g2�z2��.

TABLE 1. Expectation and Variance for the Equijoin Models (si � ni/m).

Model Generating Function E Xm(n1, n2) Var Xm(n1, n2)

UU g1(z) � g2(z) � ez ms1s2 � O(1) ms1s2 � O(1)
UB g1(z) � ez, g2(z) � (1 � z)�2 ms1s2 � O(1) ms1s2(1 � s2/�2) � O(1)
BU g1(z) � (1 � z)�1, g2(z) � ez ms1s2 � O(1) ms1s2(1 � s1/�1) � O(1)
BB g1(z) � (1 � z)�1,

g2(z) � (1 � z)�2

ms1s2 � O(1) ms1s2(1 � s1/�1)(1 � s2/�2) � O(1)
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For example, infinite urns on both types of balls give

Bs1,s2;t1,t2 � s1���t1 � s1��1 � e�s2� � e�t2�1 � t1 � e�s2�1 � t1 � s2t1���.

3.3. Urns with Balance q

The valuation of the urn is equal to 1 if the difference between the number of balls of the
first type and the number of balls of the second type is q, and to 0 otherwise. Recall that
the Hadamard product of the two functions f(t) � ¥k fkt

k and g(t) � ¥k gkt
k is (f J g)(t) �

¥k fkgkt
k. We define a shifted version of the Hadamard product of the functions g1 and g2

[defined by Eq. (3.1)] as


q�t� :� �
l

al�qblt
l.

Of course, 
0(t) � g1 J g2(t).
We have here �1(x, y, z) � g1(y)g2(z) � (x � 1)yq
q(yz), which we can also write as

Fig. 1. Centered process for the equijoin size, infinite urns, m � 20 and n1, n2 � 50.

TABLE 2. Expectation and Variance for the Semijoin Models (si � ni/m).

Model E Xm(n1, n2) Var Xm(n1, n2)

UU ms1(1 � (1/es2)) � O(1) ms1e�s2((1 � s1)(1 � e�s2) � s1s2e�s1s2) � O(1)
UB ms1(1 � (1 � (s2/�2))��2)

� O(1)
ms1(1 � (s2/�2))2�2�1[(1 � s1)(1 � (s2/�2)) � s1s2] � O(1)

BU ms1(1 � (1/es2)) � O(1) ms1e�s2[(1 � s1 � (s1/�1))(1 � e�s2) � s1s2e�s1s2] � O(1)
BB ms1(1 � (1 � (s2/�2))��2)

� O(1)
ms1(1 � (s2/�2))2�2�1

� [(1 � s1 � (s1/�1))(1 � (s2/�2)) � s1s2] � O(1)
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�1�x, y, z� � g1�y�g2�z� � �x � 1��q�y, z�

with �q�y, z� :� yq
q�yz� � �uq�g1�uy�g2�z/u�.

This comes from the fact that the generating function marking balls of the first and second
kind by y and z and the balance by u is simply g1(uy)(z/u). In the same vein, the generating
function for allocations in two batches can be written as

�2�x1, x2, y1, y2, z1, z2� � �x1 � 1��x2 � 1��uqv0�g1�uy1 � vy2�g2�z1

u
�

z2

v �
� �x1 � 1��uq�g1�uy1 � y2�g2�z1

u
� z2�

� �x2 � 1��q�y1 � y2, z1 � z2� � g1�y1 � y2�g2�z1 � z2�.

The asymptotic expectation is

E Xm�n1, n2� � m	s1,s2�q� � O�1� with 	s1,s2�q� :�

1

q
q�
1
2�

g1�
1�g2�
2�

and the asymptotic variance is Var Xm(n1, n2) � mB̃s1,s2
(q) � O(1), with

B̃s1,s2�q� � 	s1,s2�q��1 � 	s1,s2�q�
1 �
�� � q � s1�

2

�1
2 �

�� � s2�
2

�2
2 �� (3.2)

with � :� 
1
2
�q(
1
2)/
q(
1
2) and �1
2 � 
1

2(g�1/g1)(
1) � s1 � s1
2 and �2

2 � 
2
2(g�2/

g2)(
2) � s2 � s2
2 where 
1 and 
2 are defined as solutions of 
1(dg1/dy)(
1) � s1g1(
1)

and 
2(dg2/dz)(
2) � s2g2(
2). (In the same way we can compute the covariance function.)
For infinite urns the generating functions �1 and �2 can be expressed in terms of Bessel

Fig. 2. Centered process for the semijoin size, unbounded urns, m � 80 and n1, n2 � 200.
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functions. We have 
q(t) � t�q/2Iq(2�t) and 
�q(t) � t�(q�1)/2Iq�1(2�t) � gq�1(t) and
obtain

	s1,s2�q� � s1
q/2s2

�q/2Iq�2�s1s2�e�s1�s2.

Furthermore,

�q�y, z� � �y

z�
q/2

Iq�2��y��z��.

Thus, we also obtain a (simple) representation of the covariance function

Bs1,s2;t1,t2 � �s1

s2
� q/2

e�t1�t2Iq�2�s1s2�

� � I0�2��t1 � s1��t2 � s2�� � �� t1

t2
� q/2

e�s1�s2Iq�2�t1t2�� ,

where � :� �t1t2 Iq�1(2�t1t2)/Iq(2�t1t2) and

� � 1 �
�q � � � t1��q � � � t1�

t1
�

�� � t2��� � t2�

t2
.

4. MODELS WITH DELETIONS

In some instances, e.g., when modeling dynamic databases to study the evolution of
projection or join sizes, we need to allow new operations, for example, the deletion of
items (balls), or the existence of queries that do not modify the current state of the system
(no ball is added or deleted). In what follows we explicitly determine the corresponding
generating functions with a combinatorial approach. In a similar way general update
models (including those with queries) could be studied.

4.1. Allocations and Deletions in a Single Urn

Our model is based on the following assumptions:

● The urns have infinite capacity and are chosen with uniform probability 1/m.
● The balls in the same urn are indistinguishable, when performing either an insertion

or a deletion.
● We first choose the urn, then the operation to be done in this urn; the only possible

operations are insertion or deletion of a ball.
● Assuming that the urn that has been chosen is not empty, the probabilities of

insertion and deletion in this urn are equal. If the urn is empty, then we perform an
insertion.

We model this situation with two types of balls: White balls correspond to insertions,
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and are thrown according to the usual rules (there is no upper limit on the number of white
balls in an urn); black balls correspond to deletions, and are thrown in such a way that the
balance of an urn (number of white balls minus number of black balls) is always positive
or null. Thus the balance is the actual number of balls in the urn.

Such a situation is related to the framework presented in [10]. There we proved that,
starting from a general combinatorial structure for which we have the enumerating
generating function, and assuming that the basic items can take two colors, we can easily
obtain the bivariate generating function marking the size and the color balance, by taking
the Hadamard product of the initial enumerating function and of the function associated
with the sequence of balances. Requiring that the sequence of balances is always positive
simply means that this sequence is the prefix of a Dyck path, for which the enumerating
function is well known. (If we consider also queries that do not add or delet balls, we
would simply take prefixes of Motzkin paths as allowed sequences.)

4.2. Generating Functions

In the generating function associated to an urn, we use the variables x to mark the fact that
the urn is empty, z to mark the balance of the urn, and t to mark the total number of balls
(black and white) that this urn has received. The global generating function relative to the
sequence of m urns is obtained by taking the mth power of the function for one urn, where
the variables x, z, and t mark respectively the number of empty urns, the current number
of balls (balls inserted and not deleted) in the sequence of urns, and the total number of
operations, i.e., the time.

The function describing the allocation of balls into one urn is3


�t, z� � g�t� J t P�t, z�,

where g(t) is the function describing the allocation of (white and black) balls into the urn
(usually g(t) � et), and P(t, z) � ¥n,q pn,qtnzq is the bivariate function enumerating the
allowed sequences of allocations of black and white balls into the urn. Now P(t, z) is
simply the generating function for prefixes of Dyck paths, with t marking the length and
z the final height: An up step corresponds to an insertion, a down step to a deletion, we
cannot go under the zero axis, and the final height is positive (or null for Dyck paths). Let
d(t) :� (1 � �1 � 4t2)/2t2 be the function enumerating Dyck paths; then P(t, z) �
d(t)/(1 � tzd(t)). The function describing the behavior of one urn is

3In the case of multivariate functions, we index the Hadamard product by the relevant variable.

Fig. 3. Decomposition of a Dyck prefix.
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�1�x, t, z� � 
�t, z� � �x � 1�
�t, 0� � g�t� J t � d�t�

1 � tzd�t�
� �x � 1�d�t�� .

We consider now what happens at two successive times. Let �n1,n2,q1,q2
be the number

of sequences of balances of length n1 � n2, such that after n1 steps, the balance is q1, and
that the final balance is q2, and define the generating function of these numbers:

��t1, t2, z1, z2� :� �
n1,n2,q1,q2

�n1,n2,q1,q2t1
n1t2

n2z1
q1z2

q2.

At least as long as we are working with unbounded urns, it is simply the generating
function for prefixes of Dyck path, enumerated according to their total length n1 � n2 and
final height q2, and to some intermediate length n1 and corresponding height q1. We
decompose the paths according to their minimal height min between the times t1 and t2
(see Fig. 3): Let i1 be the time of last passage at min before t1, and let i2 be the time of
first passage after t1. Obviously min � q1, q2 and i1 � t1 � i2 � t2.

● The part between 0 and i1 is the prefix of a Dyck path, whose generating function is
d(t1)/(1 � t1d(t1)). Taking into account the heights at times t1 and t2 gives

d�t1�

1 � t1z1z2d�t1�
.

● In the central part of the path, the minimal height min can be equal to q1: Then i1 �
t1 � i2. Otherwise, the path begins by an up step, then stays at height at least min �
1 in the interval [i1 � 1, i2 � 1]. We shall consider the times j1 and j2 of last passage
to min � 1 before t1, and of first passage to min � 1 after t1. The path between i1
and j1 is enumerated by z1t1d(t1), and the path between j2 and i2 is enumerated by
t2d(t2). Hence the central part of the path (including the case q1 � min) is enumerated
by

1

1 � z1t1t2d�t1�d�t2�
.

● Finally, the part between the times i2 and t2 is again a Dyck path, and we mark the
final height at time t2, which gives

d�t2�

1 � t2z2d�t2�
.

Concatenating the three parts of the path gives

��t1, t2, z1, z2� �
d�t1�d�t2�

�1 � t1z1z2d�t1���1 � t2z2d�t2���1 � t1t2z1d�t1�d�t2��
.

Now let �(t1, t2, z1, z2) :� ¥n1,n2,q1,q2
kn1,n2,q1,q2

t1
n1t2

n2z1
q1z2

q2 be the function enumerating
allocations of black and white balls in two batches, such that, after throwing n1 balls, the
balance is q1, and after throwing again n2 balls in the second batch, the balance becomes
q2. As for the one-dimensional case, we have that
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��t1, t2, z1, z2� � g�t1� J t1 �g�t2� J t2 ��t1, t2, z1, z2��.

The function marking the emptiness of the urn at the end of the first or second batches by
the variables x1 and x2 is

�2�x1, x2, t1, t2, z1, z2� � �x1 � 1��x2 � 1���t1, t2, 0, 0� � �x1 � 1���t1, t2, 0, z2�

� �x2 � 1���t1, t2, z1, 0� � ��t1, t2, z1, z2�.

We have expressions for the �(t1, t2, . . .) as Hadamard products of the entire functions
g(t1) � et1 and g(t2) � et2, and of algebraic functions �(t1, t2, . . .). Hence the function
�2(x1, x2, t1, t2, z1, z2) is an entire function in t1 and t2.

It is now clear that we can write down all the desired multivariate generating functions,
and that they satisfy the assumptions of Theorem 2.1; hence the associated process
converges towards a Gaussian field G(s, t). Note that the first time s � n/m corresponds
to the total number n of operations (insertions and deletions) and t � q/m to the difference.
Hence, n� � (n � q)/2 is the number of insertions and q� � (n � q)/2 is the number of
deletions. We now define a modified discrete process X� m by

X� m�n� , q� � :� Xm�n� � q� , n� � q��,

which counts the number of empty urns with n� insertions and q� deletions and another
Gaussian process G� (s, t) (0 � t � s) by

G� �s� , t�� � G�s� � t�, s� � t��

such that

X� m�n� , q� � � E X� m�n� , q�� � �m � G� �n� /m, q� /m�.

4.3. Number of Empty Urns

In this part, we consider the number of empty urns; for simplicity we just take the total
number of operations into account (which is a functional of the bidimensional process we
studied above) and show that we can effectively compute the parameters of the limiting
process. We get the functions �1 and �2 by putting z � z1 � z2 � 1 in the corresponding
functions computed in Section 4.2:

�1�x, t� � �x � 1�g�t� J d�t� � g�t� J
d�t�

1 � td�t�
,

�2�x1, x2, t1, t2� � �x1 � 1��x2 � 1���t1, t2, 0, 0� � �x1 � 1���t1, t2, 0, 1�

� �x2 � 1���t1, t2, 1, 0� � ��t1, t2, 1, 1�.

Set f(t) :� 
(t, 0) � g(t) J d(t) and g1(t) :� 
(t, 1) � g(t) J d(t)/(1 � td(t)); so that �1(x,
t) � g1(t) � (x � 1)f(t). The asymptotic expectation is E Xm(n) � m	n/m � O(1), with
	s � f(
)/g1(
), where 
 is defined as the unique real positive solution of the equation
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tg�1(t)/g1(t) � s, with s � n/m. For g(t) � et we have f(t) � I1(2t)/t, with I1 as a Bessel
function [10]. Further g1(t) � e2t(1 � K(t)), where the function K is defined as the solution
of the equation tK�(t) � e�2tI1(2t)/t that becomes null for t � 0; hence

g1�t� � e2t�1 � �
0

t

e�2uI1�2u�
du

u �
and the equation defining the saddle point becomes 2
 � 
f(
)/g1(
) � s. We also have
	s � 2 � s/
. For example, s � 1 gives 
 � 0.6793222511 . . . and 	1 �
0.527944582 . . . . For s � 2 we get 
 � 1.2154678 . . . and 	2 � 0.3545302 . . . .

Next we obtain

B̃s �
2



�2
 � s�� �

1


2 �s
 � 2
2 � 4
 � 3s�

�
s2


2�2
�2
 � s�� � 2s
 � s2 � 4
 � s�

with � :� I0(2
)/I1(2
). Numerically we have B̃1 � 0.17394268 . . . and B̃2 �
0.1953331 . . . .

5. PROOF OF THEOREM 2.1

5.1. Existence of Limiting Gaussian Field with a.s. Continuous Sample Paths

In order to prove Theorem 2.1 we first have to show that there exists a random field with
a.s. continuous sample paths and f.d.d.’s which are characterized by the limiting f.d.d.’s
of Ym(t1, . . . , td).

Since there exist sequences probability measures on the space C which do not
converge, though their finite dimensional distributions do (for an exposition see [2, Chap.
I, Section 3]), we have to establish tightness in order to complete the prove of Theorem
2.1. This is left for the next section.

The following two lemmata will be proved together.

Lemma 5.1. There exists a Gaussian field G(t) with covariance function Bs;t, given by
(2.8) with almost surely continuous sample paths.

Lemma 5.2. The finite-dimensional distributions of

Ym�t1, . . . , td� :�
Xm� mt1 , . . . , mtd � � E Xm� mt1 , . . . , mt2 �

�m

converge weakly to the corresponding finite-dimensional distributions of G(t1, . . . , td).

Proof. The limiting distribution of Xm is characterized by
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E�xXm�n�� �
�zn��1�x, z�m

�zn��1�1, z�m .

Thus by standard saddle point techniques (compare with [1] or [5]) it follows that

E�xXm�n�� � �
�1/m�n�x�


�1/m�n�1��
m�1 � O�1

m��,

where 
s(x) � 
s1, . . . ,sd
(x) denotes


s1, . . . ,sd�x� �
�1�x, 
1, . . . , 
d�


1
s1· · · 
d

sd

and 
i � 
i(x, s1, . . . , sd) (1 � i � d) are the saddle points defined by the equations in zi

zi

��1�x, z1, . . . , zd�

�zi
� si�1�x, z1, . . . , zd�, i � 1, . . . , d. (5.1)

Consequently, by applying the results of Bender and Richmond [1] one directly obtains
that the limiting distribution of Xm is Gaussian (if m and ni are proportional) with
asymptotic mean E Xm(n) � m	(1/m)n � O(1) and Var Xm(n) � m�(1/m)n

2 � O(1), where

	s �
��log 
s�e

u��

�u
�

u�0

(5.2)

and by

�s
2 �

�2�log 
s�e
u��

�2u
�

u�0

. (5.3)

By an (advanced) exercise in implicit differentiation it follows that 	s and �s
2 � B̃s are

exactly given by (2.9) and by (2.11).
By another use of saddle point techniques it directly follows that the joint distribution

of (Xm(n1), . . . , Xm(n1 � . . . � nb)) is also Gaussian for any fixed b � 2 (if m and nij are
proportional). This shows that there is a Gaussian field underlying the finite-dimensional
distributions. Of course, a Gaussian field is characterized by a covariance function Bs;t

which can be determined just by considering the bivariate distribution (Xm(n1), Xm(n1 �
n2)).

By applying the above procedure it follows that

Cov�Xm�n1, Xm�n1 � n2�� � mB�1/m�n1;�1/m��n1�n2� � O�1�,

where
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Bs1, . . . ,sd;t1, . . . ,td �
�2�log 
s1, . . . ,sd,t1, . . . ,td�e

u1, eu2��

�u1�u2
�

u1�0,u2�0

(5.4)

with


s1, . . . ,sd,t1, . . . ,td�x1, x2� �
�2�x1, x2, 
11, . . . , 
d1, 
12, . . . , 
d2�


11
s1 · · · 
d1

sd 
12
t1�s1 · · · 
d2

td�sd
,

where 
ij � 
ij(x1, x2, s1, . . . , sd, t1, . . . , td) (i � 1, . . . , d, j � 1, 2)) are the saddle points
which are defined by the equations in zij

zi1

��2�x1, x2, z1, z2�

�zi1
� si�2�x1, x2, z1, z2�, i � 1, . . . , d, (5.5)

zi2

��2�x1, x2, z1, z2�

�zi2
� �ti � si��2�x1, x2, z1, z2�, i � 1, . . . , d. (5.6)

Another exercise in implicit differentiation shows that Bs;t is exactly given in (2.8).
Now let G(t) be the Gaussian field with covariance function Bs;t (compare with [17];

by construction it is clear that the corresponding covariance matrices are positive
semidefinite.) The above construction also ensures that all (normalized) finite-dimensional
distributions of Xm(n) converge weakly to the corresponding finite-dimensional distribu-
tions of G(t) (with t � (1/m)n).

In a final step we have to show that G(t) has a modification with a.s. continuous sample
paths. For this purpose we will prove that

Bs;t � Bs;s � O�
t � s
�. (5.7)

Namely, if (5.7) holds, then

Var�G�t� � G�s�� � Bs;s � 2Bs;t � Bt;t � O�
t � s
�, (5.8)

which implies that G(t) has a modification with a.s. continuous sample paths (see [14,
Chap. 2, Theorem 2.8 and Problem 2.9]).

First we observe that by definition (2.7) the saddle point �2(s, t) satisfy

�2�s, t� � O�
t � s
�.

We also use the property that �2 (considered as a power series) can be represented as

�2�x1, x2, z1, z2� � �1�x1x2, z1� � �
j�1

d

zj2Rj�x1, x2, z1, z2�,
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where Rj � 0 are proper power series in z1, z2 with Rj(x1, x2, z1, 0) � 0 [compare with
(2.5)]. We will use this relation for small z2 and use the shorthand notation

�2�x1, x2, z1, z2� � �1�x1x2, z1� � O�z2�. (5.9)

For convenience we set � � 
t � s
.
The next step is to show that

�u1u2 � 	s � �̃uu � O���, (5.10)

�u1vi � �̃uvi � O��� �1 � i � d�, (5.11)

�viu2 � �̃viu � O��� �1 � i � d�, (5.12)

�vivj � �̃vivj � O��� �1 � i, j � d�. (5.13)

For the proof of (5.10) we use (for x1 � x2 � 1)

��2�1, 1, z1, z2�

�x1
�

��1�1, z1�

�x
� O�z2�,

��2�1, 1, z1, z2�

�x2
�

��1�1, z1�

�x
� O�z2�,

and

�2�2�1, 1, z1, z2�

�x1�x2
�

��1�1, z1�

�x
�

�2�1�1, z1�

�x2 � O�z2�.

There relations directly imply (5.10). In the same way we can treat the other cases
(5.11)–(5.13).

Thus, combining (5.10)–(5.13), it follows that the left upper parts of the determinants
in (2.8) are given by

	
�u1u2 �u1v1 · · · �u1vd

�v1u2 �v1v1 · · · �v1vd
···

···
···

�vdu2 �vdv1 · · · �vdvd

	 � 	
	s � �̃uu �̃uv1 · · · �̃uvd

�̃v1u �̃v1v1 · · · �̃v1vd
···

···
···

�̃vdu �̃vdv1 · · · �̃vdvd

	 � O���

� 	s��̃v1v1 · · · �̃v1vd
···

···
�̃vdv1 · · · �̃vdvd

� � 	
�̃uu �̃uv1 · · · �̃uvd

�̃v1u �̃v1v1 · · · �̃v1vd
···

···
···

�̃vdu �̃vdv1 · · · �̃vdvd

	 � O���

and by
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��v1v1 · · · �v1vd
···

···
�vdv1 · · · �vdvd

� � � �̃v1v1 · · · �̃v1vd
···

···
�̃vdv1 · · · �̃vdvd

� � O���.

Next observe that

�u1wj � 
j2

�2

�2�2

�x1�zj2
�

��2

�x1

��2

�zj2

�2
2 ,

�viwj � 
i1
j2

�2

�2�2

�zi1�zj2
�

��2

�zi1

��2

�zj2

�2
2 ,

�wiwj � 
i2

��2

�zi2

�2
� �ij � 
i2
j2

�2

�2�2

�zi2�zj2
�

��2

�zi2

��2

�zj2

�2
2 ,

where we have to evaluate at (x1, x2, z1, z2) � (1, 1, �1(s, t), �2(s, t)). Thus we can extract
a common factor of the last d colums and last d rows (of the determinants of (2.8)) of the
form �
j2 and obtain for the right upper part of the determinant [in the formula (2.8)]

1

�
12· · · 
d2 	
�u1w1 · · · �u1wd

�v1w1 · · · �v1wd
···

···
�vdw1 · · · �vdwd

	 � 	
O���� · · · O����

O���� · · · O����
···

···
O���� · · · O����

	 .

(A similar relation holds for the left lower part of the determinants.) For the right lower
part we get

1


12 · · · 
d2
��w1w1 · · · �w1wd

···
···

�wdw1 · · · �wdwd

� � 	
c1 � O��� O��� · · · O���

O��� c2 � O��� · · · O���
···

· · ·
···

O��� · · · O��� cd � O���
	

for certain nonzero numbers c1, . . . , cd.
By expanding both big determinants in (2.8) and comparing them with (2.11) this

immediately proves that Bs;t � Bs;s � O(�). This completes the proof of Lemma 5.1 and
5.2 ■

5.2. Tightness

In order to prove tightness we will need two lemmas. One bounding certain polynomial
moments of the centered process and one bounding polynomial moments of the incre-
ments of the process. In the proof of the first one we will for brevity assume that �1(1,
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z) � g(z) :� g1(z1)g2(z2) . . . gd(zd) (gi is the generating function counting the allocations
of type i balls into a single urn). The general case is similar but requires mixed cumulants
of the functions which is computationally and notationally much more involved. In order
to indicate the general case, the proof of the second lemma is given in full generality, but
the long and tedious computations are only sketched.

Lemma 5.3. For all integers � � 0 there exists a constant C � 0 such that for m3 	

E�Xm�n� � E Xm�n��2� � C
n
�, (5.14)

uniformly for 
n
 � O(m).

Proof. Set z � (z1, . . . , zd) and

cn,� :� �zn�
��

�x� 
1�x, z��x�1,

where zn denotes z1
n1z2

n2 . . . zd
nd. Furthermore, let

Ai :� E �
j�0

i�1

�Xm�n� � j� �
cn,i

cn,0
. (5.15)

Then the moment occurring in (5.14) can now be expressed by

E�Xm�n� � E Xm�n��2� � �
l�0

2� �2�
l ���1�lA1

2��l �
k�1

l

SlkAk, (5.16)

where Snk denotes the Stirling numbers of the second kind and the empty sum occurring
in the above summation for l � 0 is supposed to be equal to 1.

Hence we have to compute cn,�. If we set

dj�z� �
1

g�z�

�j

�xj �1�x, z��x�1, (5.17)

then by Faà di Bruno’s formula (see, e.g., Comtet [4]) we have

cn,� � �
¥j jkj��

�!

k1! · · · k�!
�m�k1�· · ·�k��z

n�g�z�m �
j�1

� �dj�z�

j! �kj

,

where (m)k :� m!/(m � k)!. Thus we have to calculate the coefficient
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�zn�g�z�m �
j�1

� �dj�z�

j! �kj

. (5.18)

For this task we use the ideas developed in detail for simpler urn models in [6]. First note
that cn,0 � [zn]g(z)m and that by Taylor’s theorem we have for real z

gl�zei�� � gl�z�exp��
j�1

k �i��j

j!
�l,j�z� � O���k�1�z��,

where kl1 :� (zg�l(z))/gl(z) and �l,j�1(z) :� z��l,j(z), for j � 1, l � 1, . . . , d. Since there exist
no r, d such that gn � 0 if and only if gl,n � r mod d we have moreover �gl(zei�)� �
gl(z)e�c�2

for some positive constant c. Hence we can apply the saddle point method. If
	l � �l1

�1 for l � 1, . . . , d, then the saddle points of gl(zl)
mzl

�nl for l � 1, . . . , d are given
by


l � 	l�nl

m� �
gl0

gl1

nl

m �1 � O�nl

m�� .

Note that glk � 0 for l � 1, . . . , d and k � 0, 1, since we allow an urn to be empty or to
contain only one ball regardless of its type. Now define functions �� lj by

�� lj� n

m� �
m

n
�lj�	l� n

m�� , (5.19)

which are analytic functions with �� lj(0) � 1. Let � � (
1, . . . , 
d), as well as � � (�1, . . . ,
�d). Furthermore, define zk :� (z1

k, . . . , zd
k). Then applying the saddle point method yields

�z1
n�g�z�m �

g���m

�2��d�n��l�1
d nl�� l2�nl/m�

� · · ·
B̃
� exp���

l�1

d ul
2

2
� �

l�1

d �
j�3

k �iul�
j

j!
nl

1�j/2�� lj�nl

m�
� O�m �

l�1

d


l� ul

�nl
�k�1��du1 · · · dud,

where �� lj(x) � �� lj(x)�� l2(x)�j/2, and the integration domain B̃ is given by transforming B �
{�� ��l� � (m
l)

�1/2��, l � 1, . . . , d} according to the substitutions �l � ul/�nl�� l2(nl/m)
for l � 1, . . . , d. Now we could expand this into a series and evaluate the integral. In the
general case (� � 0) this yields some very complicated expressions involving, for
example, Hermite polynomials (cf. [5] for expansions of similar type), which are quite
hard to deal with. Fortunately, we need only some structural properties rather than the
exact expansion in order to complete the proof.

Observe that, if we expand the integrand, except those terms containing only squares
of ul, into a series, set
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V��, n, m� �
g���m

�2��d/2�n��l�1
d nl�� l2�nl/m�

,

and evaluate the integral we obtain [zn]g(z)m � V(�, n, m)(1 � ¥l�1
d �̃l4(nl/m)/8nl. Using

more terms, this procedure yields a multivariate asymptotic series expansion of the form

�zn�g�z�m � V��, n, m� �
j1, . . . ,jd�0

aj1, . . . ,jd�n1

m
, . . . ,

nd

m�n1
�j1 · · · nd

�jd, (5.20)

where aj1
. . .j

d
(t1, . . . , t2d) are explicitly computable analytic functions.

The next task is analyzing cn,� for � � 0, where we have to cope with the additional
factor in (5.18). W.l.o.g. let us assume that the term containing none of the factors z1, . . . ,
zd vanishes. Then d1(z) can be represented in the form d1(z) � ¥l�1

d cl
(1)(z)zl with analytic

functions cl
(1)(z). Due to the definition of dj(z) this implies dj(z) � ¥l�1

d cl
(j)(z)zl, where

cl
(j)(z) are again analytic functions. Hence, cn,� can be represented as a sum of terms with

the shape (m)�[zn]g(z)mK�(z) with coefficients independent of n and m. Here K�(z) is an
analytic function admitting a representation of the form

K��z� � �
�1, . . . ,�d�0

¥j �j��

L�1· · ·�d�z� �
l�1

d

zl
�l

with an analytic functions L�1
. . .�

d
(z).

For simplicity, assume that the above sum has only one term. Let L(z) be the additional
factor corresponding to a choice of �1, . . . , �d with ¥j �j � �. Then we have for z � �d

L�z1ei�1, . . . , zdei�d� � L�z�exp� �
j1�· · ·�jd�0

k �
l�1

d �i�l�
jl

jl!

j�z� � O��

l�1

d

zl��l
k�1���

with


e	�z� � z	

��/�z	�L�z�

L�z�
, 
j�e	�z� � z	

�

�z	

j�z� for 	 � 1, . . . , d (5.21)

where e	 denotes the 	th unit vector in �d. Thus we can proceed as in the case � � 0.
Set


̃j�z� �

j�	1�z1�, . . . , 	d�zd��

z1· · · z2
�
l�1

d

�� l2�xl�
�jl/2

and get
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�m���zn�g�z�mK��z� �
�m��L���V��, n, m�

�2��d/2 �
l�1

d


l
�l � � · · ·

B̃
� exp���

l�1

d ul
2

2

� �
l�1

d �
j�3

k �iul�
j

j!
nl

1�j/2�̃lj�nl

m� � �
l�1

d

�l

ul

�nl�̃l2�nl/m�
� �

j1�· · ·�jd�0

k �
l�1

d �iul�
jlnl

1�jl/2

jl!m
d 
̃j�1

m
� n�

� O�m �
l�1

d


l� ul

�nl
�k�1��du1 · · · dud

with 
̃j(x1, . . . , xd) � 
� j �l�1
d �� l2(xl)

�jl/2. Expanding the exp-term into a series and
evaluating the integral yields finally an asymptotic series expansion of the form

cn,� � �
�

�m��

m� L���V��, n, m� �
j1, . . . ,jd�0

aj
����1

m
� n� n�

nj (5.22)

with � � (�1, . . . , �d) and explicitly computable analytic functions aj1
. . . jd

(�) (t1, . . . , td).
Inserting this into (5.16) implies that, for m 3 	, E(Xm(n) � E Xm(n))2� is asymp-

totically equal to a rational function in n1, . . . , nd. If we choose s1, . . . , sd fixed and
require n1 � s1m, . . . , nd � sdm, then by 5.8 we have E(Xm(n) � E Xm(n))2� � O(
n
�)
as desired. Since on the one hand this holds for any choice of s1, . . . , sd and on the other
hand all terms in (5.22) (and thus in the asymptotic series for E(Xm(n) � E Xm(n))2�) have
up to constant factors the shape n1

�1 . . . nd
�d/n1

j1 . . . nd
jd, we must have �1 � . . . � �d � j1 �

. . . � jd � �. But as to the fact that n1
� �1· · · nd

� �d � 
 n
�, if ��1 � . . . � ��d � �, and above
inequality guarantees the validity of (5.14) for all n satisfying n � O(m) and the proof is
complete. ■

In order to prove tightness, by [17, Chap. XIII, Example 1.12] it suffices to show the
following lemma.

Lemma 5.4. Let n � (n1, . . . , nd) and h � (h1, . . . , hd). Then there exists a positive
constant C such that

E
�Xm�n � h� � Xm�n� � E�Xm�n � h� � Xm�n���2d�2

md�1 � C�
h

m �d�1

(5.23)

uniformly for 
n
 � O(m) as m 3 	.

Corollary. The sequence Ym(t) is tight.

Proof. In order to treat the difference Zm(n, h) � Xm(n � h) � Xm(n), we distinguish
two cases. If 
n
 � O(
h
), then set Xm

c (n) :� Xm(n) � E Xm(n) and use the crude estimate
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E Zm�n, h�2d�2 � �
k�0

d�1 �2d � 2
2k �E Xm

c �n � h�2kE Xm
c �n�2d�2�2k (5.24)

in conjunction with Lemma 5.3.
If 
n
 � O(
h
) does not hold, we may without loss of generality assume that 
h
/
n


3 0. We use the generating function that enumerates the changes of the valuation between
the first and the second batch, i.e., 
2(1/x, x, z11, . . . , zd1, z12, . . . , zd2). Set z1 � (z11, . . . ,
zd1), z2 � (z12, . . . , zd2), and

cn,h,� :� �z1
nz2

h�
��

�x� 
2�1

x
, x, z1, z2��

x�1

.

Proceeding as in (5.15)–(5.17), the moment occurring in (5.23) can again be expressed by

E�Zm�n, h� � E Zm�n, h��2d�2 � �
l�0

2d�2 �2d � 2
l ���1�lA1

2d�2�l �
k�1

l

SlkAk, (5.25)

where Ai � cn,h,i/cn,h,0. If we set

dj�z1, z2� �
1

�2�1, 1, z1, z2�

�j

�xj �2�1

x
, x, z1, z2��

x�1

,

and apply as in the proof of Lemma 5.3 Faà di Bruno’s formula, we are left with the task
of calculating the coefficient

�z1
nz2

h��2�1, 1, z1, z2�
m �

j�1

� �dj�z1, z2�

j! �kj

. (5.26)

The calculation of cn,h,0 � [z1
nz2

h]g(z1 � z2)m can be done in the same manner as the
derivation of (5.20). Let v � �0

2d and let �v(z1, z2) and �� v denote the cumulants of �2(1,
1, z1, z2) defined analogously to (5.21) and (5.19), respectively. Then the saddle points �1

� (
11, . . . , 
d1) and �2 � (
12, . . . , 
d2) of �2(1, 1, z1, z2)mz1
�nz2

�h are given by (�1,
�2) � �((1/m) � n, (1/m) � h), where � � (	1, . . . , 	2d) is the inverse of (�e1

, . . . , �e2d
).

Define �� v

V��1, �2, n, h, m� �
�2�1, 1, �1, �2�

m

�2��d�1
n�2

h��l�1
d nlhl�� el��1/m� � n, �1/m� � h��� ed�l��1/m� � n, �1/m� � h�

,

Then we get as in the proof of the previous lemma
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�z1
nz2

h��2�1, 1, �1, �2�
mV��1, �2, n, h, m� �

j1, . . . , jd�0
�1, . . . , �d�0

aj1· · ·jd�1· · ·�d�1

m
� n,

1

m
� h�n�jh��,

where aj1
. . .

jd,�1
. . .

�d
(t1, . . . , t2d) are explicitly computable analytic functions.

Now we turn to cn,h,� for � � 0. Therefore, we first analyze the additional factor
occurring in (5.26). By (2.4) we obtain

�

�x1
�2�x1, x2, z1, 0� �

�

�x2
�2�x1, x2, z1, 0��x1�x2�1 � �x2 � x1�

�

�x
�1�x, z1��x1�x2�1 � 0

and thus

d1�z1, z2� �
�

�x2
�2�x1, x2, z1, z2� �

�

�x1
�2�x1, x2, z1, z2��x1�x2�1 � �

l�1

d

cl
�1��z1, z2�zl2

with analytic functions cl
(1)(z1, z2). As in the proof of Lemma 5.3, the definition of dj(z1,

z2) guarantees that there exist analytic functions cl
(j)(z1, z2) such that dj(z1, z2) � ¥l�1

d

cl
(j)(z1, z2)zl2. Hence cn,h,� can be represented as a sum of terms with the shape

(m)�[z1
nz2

h]�2(1, 1, �1, �2)mK�(z1, z2) with coefficients independent of n, h, and m and an
analytic function K�(z1, z2) of the form

K��z1, z2� � �
�1, . . . , �d�0

¥j �j��

L�1· · ·�d�z1, z2� �
l�1

d

zl2
�l,

where L�1
. . .�

d
(z1, z2) is again analytic.

As above, we assume that this sum has only one term, denoted by L(z1, z2) and
corresponding to a choice of �1, . . . , �d with ¥j �j � �. Then we have for z1, z2 � �d

L�z11ei�11, . . . , zd1ei�d1, z12ei�12, . . . , zd2ei�d2� � L�z1, z2�

� exp� �
j11�· · ·�jd1�j12�· · ·�jd2�0

k �
l�1

d �i�l1�
jl1�i�l2�

jl2

jl1!jl2!

j1j2�z1, z2�

� O��
l�1

d

zl1��l1
k�1� � �

l�1

d

zl2��l2
k�1���,

where 
j1j2
are the cumulants of L(z1, z2) defined analogously to (5.21). Thus we can

proceed as in the case � � 0. Set

X� j1,j2�z1, z2� �

j1,j2�	1�z11�, . . . , 	d�zd1�, 	1�z12�, . . . , 	d�zd2��

z11· · · zd1z12· · · zd2

100 DRMOTA, GARDY, AND GITTENBERGER



as well as j! � (j1, . . . , jd)! :� �i�1
d ji! and M :� {0, 1, 2, . . . , k}. Then we get (cf. proof

of the previous lemma)

�m���z1
nz2

h�g�z1 � z2�
mK��z1, z2� �

�m��L��1, �2�V��1, �2, n, h, m�

�2��d �
l�1

d


l2
�l

� � · · ·
B̃
� exp���

l�1

d ul1
2

2
� �

j1, j2�Md


 j1
1,� j2
1�2

�iu1�
j1

j1!

�iu2�
j2

jj!
n1�j1/2h1�j2/2�̃j1,j2�1

m
� n,

1

m
� h�

� �
l�1

d

�l

ul2

�hl�� l2�hl/m�

� �
j11�· · ·�jd1�j12�· · ·�jd2�0

k �
l�1

d �iul1�
jl1�iul2�

jl2nl
1�jl1/2hl

1�jl2/2

jl1!jl2!m
2d 
̃j1j2�1

m
� n,

1

m
� h�

� O�m �
l�1

d


l1	ul1

�nl	
k�1

� � O�m �
l�1

d


l2	ul2

�hl	
k�1

��du11 · · · dud1du12 · · · dud2

with 
̃j1j2
(x1, . . . , x2d) � 
� j1j2

�l�1
d �� l22(xl, xd�l)

(�jl1�jl2)/2. Expanding the exp-term into a
series and evaluating the integral yields finally an asymptotic series expansion of the form

cn,h,� � �
�

�m��

m� L��1, �2�V��1, �2, n, h, m� �
l�1

d

hl
�l �

j1, . . . , jd�0,
�1, . . . , �d�0

aj,��1

m
� n,

1

m
h�n�jh��

(5.27)

with explicitly computable analytic functions aj1 . . . jd,�1
. . .�d

���
(t1, . . . , t2d).

Arguing as in the proof of the previous lemma, we choose arbitrary constants s1, . . . ,
sd and t1, . . . , td and require n1 � s1m, . . . , nd � sdm and h1 � t1m, . . . , hd � tdm. Then
by (5.8) we have E Zm(n, h)2d�2 � O(
h
d�1). On the other hand, inserting (5.27) into
(5.25), shows that E Zm(n, h)2d�2 is for m3 	 asymptotically equal to a rational function
in n1, . . . , nd, h1, . . . , hd all terms of which have the shape

h1
�1 · · · hd

�d

n1
j1 · · · nd

jdh1
�1 · · · h1

�d
(5.28)

if we neglect constant factors. Thus

�1 � · · · � �d � �1 � · · · � �d � j1 � · · · � jd � d � 1,

and (5.28) can be rewritten as
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h1
��1 · · · hd

��d
h1

j1 · · · hd
jd

n1
j1· · · nd

jd

with ��1 � . . . � ��d � d � 1. Assume without loss of generality that equality holds. If �i�1
d

(hi/ni)
ji � O(1), then

h1
��1· · · hd

��d
h1

j1 · · · hd
jd

n1
j1 · · · nd

jd � 
h
d�1,

and we would be finished. If �i�1
d (hi/ni)

ji is not bounded, then we may assume �i�1
d

(hi/ni)
ji3 	. In this case set hi � tim, for i � 1, . . . , d, with ti lying in an interval bounded

away from zero. On the one hand, this implies the existence of a positive constant C such
that h1

��1 · · · hd
��d � C
h
d�1 and consequently

h1
��1· · · hd

��d
h1

j1· · · hd
jd

n1
j1· · · nd

jd � 
h
d�1 (5.29)

since we still have �i�1
d (hi/ni)

ji3 	. On the other hand, by 
n
 � O(m) we have now 
n

� O(
h
) and thus (5.29) contradicts the conclusion of (5.24) and Lemma 5.3. ■
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