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Abstract 

We present a dynamic modelization of a relational database, when submitted to a sequence of 
queries and updates, that allows us to study the evolution of the sizes of relations. These sizes, 
either present in the database or computed by application of a relational operator (derived 
relation), have long been recognized as important parameters in query optimization. While the 
problem of estimating the sizes of derived relations at a given time (“static” case) has been the 
subject of several studies, to the best of our knowledge the evolution of the relation sizes under 
queries and updates (“dynamic” case) has not been studied so far. 

We consider the size of a relation as a random variable, and we study its probability 
distribution when the database is submitted to a sequence of insertions, deletions and queries. 
We show that the relation sizes behave asymptotically as Gaussian processes, whose expecta- 
tion and covariance are proportional to the time. This approach also allows us to analyse the 
maximum of the size of the derived relation. 

1. Introduction 

Among the parameters that can be defined on relational databases, the sizes of the 
relations, either present in the database or computed by application of a relational 
operator (“derived” relations) have long been recognized as important parameters in 
query optimization, i.e. in the search for an efficient way of answering users’ queries, 
and many models have been proposed for their evaluation (see [30] for a survey). 
So-called parametric models are based on a priori assumptions on the probability 
distributions of the objects modelled in the database (relations, attributes, etc); they 
compute the mean, and sometimes further moments, of the distribution of a derived 
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relation size. Such models are used to estimate the size of a relation obtained 
by a selection, a projection or a join [2,16,17,35,36]. Nonparametric models 

use the values present in the database at a given time to obtain empirical informa- 
tion on the underlying probability distributions. This information is summed up 
in histograms, that are then used to compute estimations of the sizes of derived 
relations [31,34], see also [32] for a related approach. An approach popular in 
recent years is based on sampling; again it uses information present in the 
database to compute estimates of derived relation sizes [18, 19,24, 331. All 
these approaches consider a static database, the only exception being the 
recognized necessity of maintaining some parameters necessary to the sampling 
process [23]. 

Our work presents a parametric model for dynamic databases: We study the prob- 
abilistic behaviour of (initial and derived) relation sizes under assumptions on the 
values that can be assumed by the database elements, and on the type of operations 
allowed on the database. As such, it is in close relation to studies on the dynamic 
behaviour of data structures [9,11,22,26-291. 

We gave in former papers [12,13] conditions which ensure that, in the static case 
(i.e. at a given time), the size of a derived relation, obtained by a projection, an equi- 
join or a semijoin, follows a normal limiting distribution. Our goal here is to extend 
these results to dynamic databases, i.e. databases that can be queried and updated. To 
this effect, we consider the size of a relation as a random variable X, and we study its 
behaviour when the database is submitted to a sequence of insertions, deletions and 
queries. We prove that knowing the initial and final sizes of a relation, the constraints 
on the relation (existence of a functional dependency, sizes of attribute domains, etc.), 
and the type of operations (queries or updates, with specific probabilities of choosing 
a given operation at a given time ) allows us to characterize completely the random 
variable X, and that, asymptotically (i.e. for a large number of operations), the size of 
an initial relation behaves as a Markov Gaussian process, and the size of a derived 
relation as a (not necessarily Markov) Gaussian process. In both cases, the expecta- 
tion and covariance are proportional to the time nt, and the process has a determinis- 
tic part of order n on which is superimposed a random part of order $. Such 
a characterization also allows us to analyse the maximum of the size of the derived 
relation. 

The rest of this paper is organized as follows. Section 2 presents the database 
parameters that we shall study and their modelization in terms of urn models, then 
briefly recalls the sequences of operations which may be considered. Section 3 gives 
our main result: the characterization of the size of a derived relation as a Gaussian 
process, and presents an overview of our method with a sketch of the proof. Section 
4 introduces our notations, then Section 5 presents the basic processes (number of 
tuples in a relation) corresponding to different update models and to several con- 
straints on the initial objects (relations). Sections 68 are devoted to the detailed proof 
of the theorem relative to the projection, Section 9 to the study of the maximum size, 
and Section 10 to the joins. 
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2. Databases and urn models 

The basic objects we consider are relations, which are sets of (distinct) tuples. They 
can be seen as tables: a row represents a tuple, and the number of lines is the number 
of elements of the relation (its size); the columns are called the attributes. The 
operations we consider on the relations are the projection and the joins (equijoin or 
semijoin); these relational operations take as arguments one or two relations and 
define a new relation. For ease of presentation, and without loss of generality, we shall 
restrict ourselves to the case of relations R or S with two attributes X and Y, or X and 
Z, and of the projection or the join on X. We shall use the terms initial relation for the 
relations R and S, and derived relation for the relation obtained by a projection or 
a join (see Fig. 1). 

We have shown in [12,13] that it is possible to study the conditional distribution of 
the sizes of the derived relations, assuming that the sizes of the initial relations are 
known. To this effect, we introduced, for each operator: projection, equijoin, or 
semijoin, a modelization in terms of urns and balls that allowed us to see the 
estimation of the derived relation size as an occupancy model. Now we want to study 
the variations of this size under a sequence of updates and queries on the database. 
Again we shall use this modelization, which we briefly recall below. 

2.1 Projections and the occupancy problem in urn models 

Let d be the number of distinct possible values for the attribute X; we assume that, 
although it may become large, d is finite. The projection of the relation R can be 
modelized with urns and balls, according to a well-known occupancy model, as follows. 

We consider a sequence of d urns, each urn being labelled with a distinct value of the 
attribute X. To each tuple of the relation R, we associate a ball labelled by the value of 
tuple on the column X; this ball falls into the corresponding urn. An equivalent way of 
seeing this phenomenon is to consider instead that we have a finite supply of balls, and 
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Fig. 1. Two relations R and S, with the projection nx(R) of R on the attribute X, the equijoin RDCS of 
R and S and the semijoin RDS of R with S. 
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that we allocate them at random among the d urns, each trial being independent of the 
others. Each ball then receives the label of the urn it falls into. 

After coupling all the tuples of the initial relation R with urns, some urns are empty 
and some contain at least one ball, The number of urns with at least one ball is exactly 

the number of tuples in the projection of the relation R. 
If, instead of the number of urns with at least one ball, we consider the number of 

empty urns, and if we assume that each urn can receive an unbounded number of 
balls, then we have the classical occupancy problem presented for example in [20]. 
Assuming that the urn size is infinite corresponds, in terms of relational databases, to 
a relation with a key on the attribute suppressed in the projection. As we shall also 
want to study relations without keys, we shall have to extend the models to the case 
where the urns have afinite capacity (there are 6 places for balls). More generally, if we 
want to allow for constraints on the database relations, we have to introduce related 
constraints on the way balls can be allocated into urns (see [12]). 

2.2. Urn models for the equijoin and semijoin 

We have seen that the problem of evaluating the size of the projection of a relation 
can be reformulated in terms of a classical occupancy problem for a suitable urn 
model: We throw n balls into a sequence of d distinguishable urns, and study the 
number of urns with at least one ball. The semijoin and equijoin sizes can likewise be 
expressed in the general framework of urn models, and we have presented two models 
to this effect in [13], which we recall below. 

Let us start with a sequence of d urns and with two kinds of balls, say blue (B) and 
red (R); the balls of a given colour are thrown into the urns independently of each 
other but may depend on the balls of the other colour. After throwing specified 
numbers of red and blue balls, we assign a certain number of balls of a third colour, 
say green, to the urns according to one of the two sets of rules below, according to the 
operation we wish to modelize. The red balls are associated with the relation R, the 
blue balls with the relation S, and the green balls to their equijoin R~AS or semijoin 
RP S. The number of balls of one colour is the size of the corresponding relation. 

2.2.1. Model for the equijoin (EJ) 
l We throw into the urns a given number r of red balls, and a given number s of blue 

balls. 
l For each urn where there are i red balls and j blue balls, we put ij green balls in the 

urn. If an urn contains no balls, or balls of only one color, we put no green ball into 
this urn. 

l We count the total number of green balls. 

2.2.2. Model for the semijoin (SJ) 
l We throw into the urns a given number r of red balls, and a given number s of blue 

balls. 
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l For each urn containing at least one blue ball, we put as many green balls as there 
are red balls. The urns without balls or with balls of only one colour do not receive 
any green ball. 

l We count the total number of green balls. 

2.3 Database assumptions 

We shall make the following assumptions in the present work, which cover a rea- 
sonable number of situations while keeping the computations manageable. We shall 
assume that each urn is equally likely, and that, when the urns have a finite capacity, 
each place in an urn is equally likely. In terms of relational databases, these assump- 
tions mean that the possible values for the projection or join attribute X are uniformly 
distributed, and that, when the attribute Y or Z, suppressed by the projection or not 
participating in the join, is not a key of the relation, the possible values of Y or Z are 
also uniformly distributed. We point out that, when the attribute Y or Z is a key, the 
(possibly very skewed) probability distribution of the values on this attribute has no 
influence on the size of the result, as long as we study the distribution of the relation 
size conditioned on the initial size [12, 131. 

We also assume that the relations satisfy standard independence assumptions: The 
coordinates of a tuple are independent, the tuples of a given relation are independent, 
and, for the join of the relations R and S, the values of the two relations are 
independent (but see [3,4] for a discussion about these assumptions). 

In the rest of the paper, we shall use indifferently the terms relation size and number 
of balls or number of tuples, and (in Sections 6-8) the terms projection size and number 
of nonempty urns. 

2.4. Dynamic models 

The urn models we have just defined describe well a relation at a given time, but 
they do not take into account its evolution during a sequence of updates and queries. 
We now extend our modelization to consider the evolution of a relation subjected to 
a sequence of updates (insertions and deletions) and searches (queries). 

We denote by ps, pS and ps the probability of making an insertion, a deletion, and 
a query. If these probabilities vary according to the time t, we use the notations p>(t), 
p&t) and ps(t). We can choose non equal probabilities for insertion and deletion, as 
long as the probability of an insertion is at least equal to the probability of a deletion: 
pf(t) 3 p&t). Otherwise, the relation is either empty or has very few elements, and this 
is of little interest, both in terms of database and for the underlying probability model. 

We must now make precise the individual probabilities of insertion at a given place, 
and of deletion of a given ball. If we choose to do a deletion, the conditional 
probability of deleting a given ball is l/number ofballs at this time, both for the infinite 
urn and for the bounded urn models. If we choose to do an insertion, we must give the 
conditional probability of inserting a ball into an urn, and the infinite and finite 
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models differ on this point. In the injinite urn model, each urn has the same probability 
of getting the new ball. If the urns are bounded, we can view each urn as a collection of 
6 distinguishable cells, and each empty cell, whatever the urn it belongs to, has the 
same conditional probability of receiving the ball, given that we have chosen to do an 
insertion. 

To fully specify the dynamic evolution of the relation, we also specify its status at 
the beginning and at the end of the sequence of updates and queries. We assume that 
the relation is empty at the beginning. If we impose a condition on the relation at the 
end (this is not mandatory; see Section 5 for such examples), either the relation is 
empty or its size is proportional to the time elapsed. 

3. Main ideas and results 

3.1. The process describing the projection size 

Our first goal is to study the variation of the size of the projection under a sequence 
of queries and updates. We shall do this during a “large” time and for a “large” 
number of urns. To this effect, we introduce a scaling factor n; the number of urns d is 
proportional to II and a time z is written, after normalizations, as z = nt. The time is 
chosen in an interval of length 2n: 0 < t d 2.3 We shall study two related stochastic 
processes, describing, respectively, the number of balls, denoted by 9, and the size of 
the projection (number of nonempty urns), denoted by 9; we shall show that each of 
these processes has a deterministic component of order n, and a random component of 

order &. Our main result is thus the following theorem, where the functions G, @ and 
YR can be given explicitly for the different models. 

Theorem 3.1. The size S([nt]) of the projection at the time nt is asymptotically a (not 
necessarily Markov) Gaussian process such that 

~CS(C~~l)l - WtL 
~~W(C~4lL SKnhl)) - nyROIt t2L 
VAR[S([nt])] - n@(t). 

The relafive error in the density due to the asymptotic approximation is 0(1/G). 

3.2. Sketch of our method 

The first step in proving Theorem 3.1 is to study the process 9J describing the 
number of tuples in the initial relation. To fully describe 9, we have to know the 

3 We could choose for maximum time n instead of 2n; however, the second choice gives simpler formulae 

when the final relation is empty. 
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probabilities for insertion, deletion and query, and to give the initial and final 
sizes of the relation. In the cases we are interested in, we can show that 9 is a 
Gaussian processes with a deterministic part pb, on which is superimposed a random 
part 9r: 

The process PO follows a deterministic curve nfi(t); the functionf, is related to the 
exact relation (or urn) model, and can be computed explicitly. The process 8i is 

a Markov Gaussian process of order ,,&. The computation of B0 and 8r, and of 
several related parameters such as fr , is done in Section 5. 

The process 9 (number of tuples) determines another process 9 (size of the projec- 
tion). Before considering 9, we shall study another process &,, defined as the size of 
the projection of a relation R, when the size of R is given by the process PO (which is 
a first-order approximation of 9’). To this effect, we define two random variables, say 
Y1 and Y,, which are simply the size of the projection at different times tl and tZ. We 
know from previous work [12] that the conditional distribution of the projection size, 
given the size of the initial relation, follows asymptotically a normal distribution, of 
known expectation and variance. The covariance COV( Yi, Y,) will allow us to 
characterize So as a process composed of a deterministic part nG(t) and a random part 

,,& V(t). The computation of CO V ( Y, , Y,) starts with Lemma 1 of Section 6.1, and 
depends on the stochastic behaviour of the number of balls in any one urn. This 
behaviour can itself be expressed, both for the bounded and for the infinite urn 
models, in terms of the probabilities pX, p9 and p9, and of the function fi related to the 
expectation of the number of balls (Section 6). For any of the processes of Section 5, 
we could then specialize these results to get the covariance of Y, and Y,; see Sections 
7.1 and 7.2 for examples of such computations. We shall rather show that there exists 
a common form giving the covariance in terms of fr , ps, p9 and pS; this is Proposition 
1 of Section 7.3. 

We then consider the process 9 obtained by superimposing 9’i on 9,,. We can 
again define two random variables size ofthe projection at the times t,and tz; let us call 
them S1 and S2. As we have done for Yi and Y,, we have to compute their covariance. 
But the Si are obtained from the Yi by introducing a further degree of randomness, 
and it is possible to write their covariance as 

cowl, S,) = COY Yl, Y,) + Y(tl)Y(b)“Mtl, t2) 

for a suitable function y(t),fi(tl, t2) being the covariance of the process 8i taken at 
different times tl and t2. The covariance of Y1 and Y2 thus characterizes the “static” 
part, and the term added to it to get the covariance of S1 and S2 comes from the fact 
that the number of tuples B is itself a Gaussian process. The introduction of g1 and 
the computation of CO V(Si , S,) are found in Section 8. 

Once we have the covariance of the sizes of the projection at times tl and tz, i.e. of 
S, and SZ, the next part is to show that the final process size of projection, which we 
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denote by 1, is still asymptotically a Gaussian process. More precisely, we shall show 
in Section 8 that 9 has a part A?0 coming from LP,,, on which is added a random part dr 
coming from PO and from 8,: 

3.3, The maximum size of the projection 

When we have proved that the final process 2 is Gaussian, and obtained an 
asymptotic expression for the covariance of S1 and SZ, we have tools for studying 
whatever function of the process we are interested in. We shall study here the process 
giving the maximum size of the projection. We obtain the following result, which is 
proved in Section 9. 

Theorem 3.2. Let f such that G’(f) = 0. Assume that f~ [0,2] and set G = G(f). The 
maximum size of the projection M:= maxto, 2I S([nt]) occurs at a time t*, and is such that 

M - nC + J&t + O(rF), 

where m and t* are random variables that can be precisely characterized. 

3.4 The process describing the join size 

The method we have sketched in Section 3.2 can be adapted to deal with joins. The 
major modification is that the two initial relations are described by a bi-dimensional 
process. We obtain the following result, whose proof is given in Section 10. 

Theorem 3.3. In the join model, the size S([nt]) of the equijoin or semijoin at the time nt 
is asymptotically given by a (not necessarily Markov) Gaussian process with 

WXntl)l - nW, with G(t):= Kf~(O,f~Wl, 

COWI, &) - nYk(h, M, 

with 

uk(t1, t2):= %&I, tz) 

+ YR(tI)YR(tz)f~‘R(tI> tz) + rR(tI)fWfiR*B(tI? tz) 

+ r”(tI)YR(tz)f?R(tI, tz) + rB(tl)r”(tz)“WV1, t2), 

f+WS(Cntlll N ~C%,R(t, 6 + YRft)2ff*Rk t) + 2YR@)YB(t)ft’B@, t) 

+ rBwf~B(t, 01. 

The relative error in the density due to the asymptotic approximation is 0(1/,/n). 
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5. 

Notations 

Let n be some scaling parameter (n -+ + co later on). 
We have d urns, numbered i, j, . . . ; the urn numbered i is Ui. The parameters IZ and 
d are related by d = O(n) = cw say. 
When the capacity of an urn is finite, it is denoted by 6 (constant). Let A = d6 = /3n, 
with /I = ~6: A is the maximal number of balls that we can allocate to the urns. 
Let PC; be the random variable number of balls in the urn Ui at time tl, and 
Et = E[K’; 1; similarly for K'; at time t2. 

For any measurable function cp and for a random variable K, we can define a new 
random variable V(K). Let E:[cp] = E;[~(K;)]. We shall use in this paper the 
functions (P(K) = Z(K > 0) (indicator function) and, in Section 10, (pZ(rc) = K. 
Ei;$ is the expectation E[K~K~Z] and similarly Ei,‘z[cp]:= E[tp(~‘;)cp(~j,)]. 

We denote by n, and n2 the number of tuples of the initial relation, i.e. the total 
number of balls, at the time tl and t2. 

9,9,22 denote, respectively, an insertion, a deletion or a query. Their probabilities 
at the time t are, respectively, pj(t), p&t) and ps(t) (ps(t) + p&t) + pg(t) = 1). 
We denote by 3 the weak convergence of random functions in the space of all 
right-continuous functions having left limits and endowed with the Skorohod 
metric (see Cl]). All convergences with be defined for n + + 00. 

The process 9 related to the initial relation size 

Let W(t) be the number of balls at some time t. We might choose the current 
number of steps (number of queries or updates) as a measure for the time, which would 
then belong to the interval [0,2n]. However, we shall study the asymptotic behaviour 
of W when the time goes to infinity, and it is interesting to change the time scale by 
choosing a time nt for t E [0,2], and to normalize the random variable W. For all the 
models presented below, the number of tuples W has an expectation and a variance of 
order n, and we can show that, for a suitable functionf, related to the type of process, 
and assuming that we start from an empty structure at time 0: 

WCntl) - 6 0) 

Jrr 
=3X(t), 0 < t < 2, 

where the process X(t) is a Markov Gaussian process whose covariance is denoted 
&(s, t), s < t. As a consequence, we have that for any t1 and c2: 

ECe i(51nl +Tm) 
1 - exp(n{iCSlfi@l) + 52fi(t2)1 

- 3CW2h h) + 25152f2Olr t2) + w2(t29 t2m. 

We now turn to the presentation of the models we shall study. The processes can be 
divided in two families: 
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(i) the weighted structure in the sense of Flajolet et al. [lo], Louchard [26], with 
a possibility function given by pas(9) = k for a k-size structure (there are k ways of 
deleting an element in a structure composed from k elements!); 

(ii) the classical unweighted structure. 

In the weighted structure family, we have for instance: 
Pl: 9 + 9. We a assume that we return to an empty structure at time 2n. Then [26] 

fl(Q = ; a - 0, 
s2 (2 - ty 

f2h 0 = - ___ 
2 2 ) 

PA) = Cl +f;(w = 1 - @, PA4 = Cl -f;w1/2 = t/2. 

P2: 4 + 9;. We assume that we return to a structure with size an at time 2n. The 
techniques we used in 1261 lead here to 

fI(r)=t(I-.y), fZ(s,t)=Ts2(2-t)(-f+at+2), s<t. 

Note that fi possesses a maximum for t E ]0,2[ iff a < 1. For 1 < a d 2, fi is 

maximized at t = 2. Again, py(t) = [l +f;‘(t)]/2, p9(r) = [l -f;(t)]/2. 
We should be tempted to extend the weighted model to the case with 9. But, when 
P(insertion) = P(deletion) = d and P(query) = i, we see that the asymptotic total 
measure along nf((t) contains a dominant term 2nlognC,(2), where C,(t) is the 
total number of deletions upto the time r. With constraints on the structure, it leads 
to C,(2) = C,(2) = n, i.e. no queries at all, which is a completely uninteresting 

process! 
So we turn to the unweighted structure family. 

P3: 9(p, = 1). We have n, = nt,, n2 = nt,, andfi(t) = t. 
P4: 9 + $9 + 9 with ps, p9 and p1 constant (ps > pg), and without constraint on the 

relation size at the time 2n. The mean and variance corresponding to the variation of 

the relation size for one step are given by 

2 = Ps - P% 

so 

fJ2 = px + pg - x2. 

j-10) = 24 fi(S, t) = 02s, s < t. 

This is a classical Brownian motion (BM). 

P5: 9 + 9 + % with arrival at a relation of size 2nZ + a& at the time 2n. The mean 
X and variance 0’ corresponding to one step are the same as for P4, and 

W([nt]) - n?t 

4 
3 aBB(t) + ;, 
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with BB a Brownian bridge. The expectation and covariance of Ware given by 

at 
j-1(t) = xt + - 

42 - t) 

26’ 
&(s, t) = a2 ~ 2 , s<t. 

l P6: 9 + 9 + 9, with p>(t), p&t), pg(t) time dependent. The infinitesimal mean and 
variance are given by 

m = PAS) - PO(S), i’(s) = PAS) + P& - X’(s), 

so 

fi(t) = 02(t) = 

The process describing the relation size is a time-dependent BM, which can be 
written as 

BMob2(t)) = 

where BMo and BM1 are standard BM. 

l P7: with the finite urn case, assume that each position taken at random among the 
A possible positions changes from status (full + empty, empty + full). This is 
equivalent to the Ehrenfest urn model (9 + $3). From Karlin and Taylor [21, 
p. 1711, we know that, if A = 2N, then 

WCW - iv 
JN 

*O/Y(t) (OU(0) = 0 if W(0) = N). 

OU is the classical Ornstein-Uhlenbeck process, with mean 0 and covariance 

+Ce -W-S) _ e-“+“)] 7 s < t. Note that this covariance rapidly converges to its sta- 
tionary form 

fe --(f--S) as s, t+ + co, t - s = O(1). 

Here A = 2N = /?n, so N = /?n/2, Ii(t) = p/2 and py(t) = pg(t) = 3. If we start with 
W(0) = /ln/2, then 

WC4 - t n 

Jtr 

with covariance 

B f2(& t) = _[,-ws)/s _ ,-2c~+m-J~ 
4 
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If we start with W(0) = 0 then it is easily checked that 

WCntl) - d n 

Jt; 

and 

6. Urn models: preliminary results 

6.1. General form of the covariance: Lemma 1 

Let Y1, Y2 be the sizes of the projection at times tl, t2; Lemma 1 below gives 
a general expression for their covariance CO V( Y1, Y,), in terms of some probabilities 
that can be defined whatever the urn model. 

We recall that K\ (resp. I&) is a random variable giving the number of balls in the 
urn Vi at the time t, (resp. t2). Define (P(K) = Z(K > 0); then the projection sizes Y1 and 
Y2 at the times t1 and t2 can be written as Y1 := If= 1 cp(rc\) and Y2 := $ 1 (P(K$). Let 

Zl; = Pr [lcl; = 0] = E [I(Ic~ = 0)] (1) 

and similarly for Zi,: Zi (resp. Zi,) is the probability that the urn Vi is empty at the 
time t, (resp. t2). Define also the joint probability 

Zij2 = Pr[xi = 0 A K$ = 01. (2) 

The term Z\i, is the probability that the urn Vi is empty at the time tl and that the urn 
Uj is empty at the time t2. 

Lemma 1. The expectation of the projection size Y1 at the time tI and the covariance of 
the projection sizes Y1 and Y2 at the times tl and t2 can be expressed in terms of the 
probabilities Zi, , ZJ; and Z$!2 dejined by (1) and (2): 

E( Y,) = d(1 - Z’,); CO V( Y1, Y,) = d(Z’i;2 - Zi,j2) + d2Ciji2, 

with 

cl;j, = zi.j 
1.2 - zl;zJ;. 

Proof. As the runs are equiprobable: 

E(Y,) = i E[q+c;)] = i E:[q] = dE;[q]. 
i=l i=l 
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Similarly, E( Y,) = dEjz [q]. The probability that the urn Vi is not empty at the time or 
is E’; [q], and probability that the urn Uj is not empty at the time t2 is E< [cp]: 

E;[cp] = 1 -Zi,, Ej,[cp] = 1 - Zj,. 

By definition, CO V( Y1, Y,) = E( Y1 Y,) - E( Y,)E( Y,), and 

E( Y1 Yz) = i E[cp(rcf)cp(KI;)] = dE’ij&] + d(d - l),$$ [q]. 
i.j=l 

Now El!2 [q] is the joint probability that the urn Ui is not empty at time tl, and that 
the urn Uj is not empty at time t2. By an argument of inclusionexclusion, we get 

E’i;‘;[cp] = Pr(cp(~‘;) = (p(& = 1) = 1 - Zi - Zj, + Z&. 

Hence 

COV( Y1, Y,) = d(Z’; - zi, + zy2 - Z’ij2) + d2(Z’if2 - ZiZj,). 

By symmetry, Zi = Z\, which gives the desired result. 0 

Let us now turn to the urn models. The stochastic behaviour of a specific urn 
depends only on p4(t), &t), pg(t) andf, (t), which in turn depend on the type of process 
we are concerned with (see Section 5). We shall express our results in terms of the 
parameters ps, p9, pm and Jr, first for infinite urns, then for finite urns. These results 
can then be specified for any process of Section 5, i.e. for a choice of ps, psa, ps and fr . 

6.2. Model d: the urns are of unlimited size 

We recall that the number of urns d and the parameter n are related by d = cw, and 
that the average number of balls at the time n_t is nfi (t). Following Louchard [27], we 
see that, asymptotically, the number of balls in a given urn is given by a classical birth 
and death process with rates 

A(t) = @, 
P&t) 

Lx 
p(t) = jTJ$ 

The one ball survival probability between tl and t2 is given by 

The total number of balls inserted in one urn, between tl and t2, and not deleted at t2, 

follows a Poisson distribution with parameter 

s 

12 
PI,Z =.&(tr, M/m, with_&@,, k):= P&)Ps~,~(u, t2)du ( = 0 if tl = t2). 

11 
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Note that, by obvious probabilistic reasoning, we have 

fl@l)P%2 +f3@1, t2) =f1(tz). 

6.3. Model 43: the urns are bounded 

In order to avoid trivial models, we assume that the average number of tuples does 
not exceed the maximal capacity of all the urns in the time interval we consider: 
nfi(t) < A, i,e.fi(t) < /?. We first prove two lemmata giving the number of balls in an 
urn at the time tl and its evolution between tl and t2, then analyse the conditional 
distribution of the number of balls in an urn at the time t2, conditioned on the number 
of balls in the urn at the time tl. 

6.3.1. Distribution of the number of balls in an urn 

Lemma 2. At the time tI , the number of balls tci in the urn Vi is asymptotically Binomial 

(SYi+z) with parameters 

4 f-1 (t1 J/B. 

Proof. The probability that there are k balls in the urn Ui is 

Now, for fixed k and 6 and large n, and with A = /In and nI = nfi(tI), 

6 (A - n,)“-“n’j 
Pr[tc’,=k]- k 

0 
Ad 

which shows that JC~ asymptotically follows a binomial distribution. 0 

Lemma 3. Given that we start with kI balls in the urn Ui at the time tt, the number of 

balls tc(t) (t > tI) in the urn Vi is described asymptotically by a birth and death process 
startingfrom kI, with birth rate n(t) = [S - tc(t)]f4(t), wheref,(t) = ps(t)/[B -fi(t)] is 
the birth rate in a cell, and with individual death ratefs(t), wheref,(t) = pa(t)/fi (t). 

Proof. The probability of insertion in the urn Ui, between t and t + l/n, is 

Py(t) a = (6 - Jc(t)) cp p$$, ;. 
1 
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Similarly the probability that one tuple is deleted in the urn CJi is 

6.3.2. Conditional distribution 

To analyse the distribution of the number of balls in an urn at the time tz, 

conditioned on the number of balls in the same urn at the time tl , it is convenient to 
introduce the function 

ff&kl, k):=f+‘[K(t,) = k 1 K(tl) = k,]. 

We can see the content of an urn with It(t) balls as a population of It(t) type 1 (balls) 
individuals and 6 - rc(t) type 2 (empty places) individuals, changing type with ratef, 
and&, by Lemma 3. At the time tl, K(tl) = kl and 6 - Ic(tl) = 6 - kl. Let 

Pi,j(tl, tz) = Pr [individual of type i at the time tl is of type j at the time tz]. 

so 

P1,2@1, t2) + Pl,l@l, t2) = 4 P2,2@l,t2) + pz,l(tlYt2) = 4 (3) 

and the number of balls in the urn at the time t2 is K(t2) = Xl,l(tl, tz) + 

X2, I (tl, t2), where X1, 1 (tI, t2) is the number of balls existing at the time tl which are 
still alive at the time t2, and X2, 1 (t 1, tz) is the number of places empty at the time tr , 
and which contain a ball at the time t2, The random variables X 1, 1 and X2, 1 are 
independent, with distributions 9%~ (k, , ~~,~(t~; t2)) and W&(6 - k, , p2, r(tr t2)). 

The probability p2, l(tl, t2) that a cell which is empty at the time tl is full at the time 
t2 satisfies the differential equation 

~~,~(tr, t2 + dt) = ~~,~(t~, t2) Pr[survival during dt] 

+ ~~,~(tr, tz) Pr[birth during dt]. 

Now the probability that there is a birth in an empty cell during an interval of time 
dt isf4 dt, and the probability that the individual in an occupied cell survives during 
a time dt is 1 -f5 dt; hence p2, 1 satisfies the relation 

pz,r(tr, rz + dt) = ~2,101, t2)O -fdtz)W + p2,2h, t2)_L(t2W 

Define 

fs(t) :=.K.&) + f&); Ml, M:= exp[ - ~~~r,(a)da]. 

With (3), and taking dt + 0, we readily obtain that the function t wp2,, (tl, t) satisfies 
the differential equation 

Y’(t) +f6(t) Y(t) =fJt), with Y(tr) = 0. 
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Solving it, we get 

The probability ~~,~(tr, t2) that a cell which is full at the time tI is again full at the 
time t2 satisfies the same differential equation, but with the initial condition Y(tr ) = 1; 
hence 

Now the probability ~r,~(tr, t2) that a cell which is full at the time tr becomes 
empty at the time t2 satisfies the differential equation 

Y’(t) +f&) Y(t) =fs(t), with Y(t,) = 0, 

so 

The probability ~~,~(t~, t2) that a cell empty at tr is still empty at t2 satisfies the 
same equation as p1,2, but with the initial condition Y(tl) = 1; hence 

~2.201, t2) =fh, ~2) + PI,~@I, ~2) =_WI, ~2) + 
I 

h4f?(u> t2W. 

Finally, we obtain the probability Lr1,2(k, 0) that an’;rn is empty at the time t2, 
given that it contains k balls at the time tr : The k balls become empty places and the 
6 - k empty places stay empty; hence 

Hr.& 0) = CPI,~@I, ~211~ C~2.201, W-k. 

The conditional expectation of the number of balls at the time t2, given the number 
of balls at the time fI, is 

M1,2@) = EC+2)14t1) = kl = kf,@l, t2) + 6~2,1(4 t2). 

The average number of balls in an urn at the time t is nfi(t)/d; the average numbers 
of balls in an urn at the times tl and t2, i.e. nfi(tr)/d and nfi(t2)/d, are related by 

f1(t2) .fl@l) 
-=~Pl.lwz)+ 

d P2, IQ1 9 t2). 

Rewriting, we get 
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7. Computation of CO V( Y1, Y,) for a nonrandom static structure 

In the next subsections, we give some examples of the computation of CO V( Yi, Y,), 
before dealing with the general case in Section 7.3. We use the notations Pi/d for the 
process Pi in the model with infinite urns, and Pi/93 for the process Pi in the model 
with bounded urns. The detailed computations can be found in the technical report 

c141. 

7.1. P3/&4: unbounded urns and insertions 

The probability that the urn Ui contains at least one ball at the time tl and at the 
time t2 is simply the probability that the urn is not empty at the time t2 (there are no 
deletions): ZI;:, = Z\, and Lemma 1 gives 

COV = d(Z’, - Z7!2) + d2(Z’j;2 - z;zi,), 

The next step is to compute the probabilities Zi and Z$!2. We readily derive 

1 n’ 

zi= l-2 ( ) N e-rlla, 1 “2 
Z\=Zj,= 1-d . 

( > 

The term Z$iz is the probability that the urn Ui is empty at the time tl and that the urn 

Uj is empty at the time t2. As there are no deletions, this is also the probability that the 
urns Ui and Uj are empty at the time tl (after throwing n, balls) and that the urn Uj is 
still empty at the time t2, after throwing n1,2 = n2 - n1 new balls; 

Hence 

A direct asymptotic analysis leads to 

E(Y,) - an(1 - e-‘1’a), 
n+m 

cov N n [,,-tz/a _ ,,-ct1+w _ tle-(‘l+‘2)/q 

“+KZ 



142 D. Gardy, G. Louchard/ Theoretical Computer Science 144 (1995) 125-159 

However, for further application, it is more convenient to rewrite the covariance in 
a way that leads to computation of a partial derivative: 

+,(I -3”“““‘[(1 __L)“-(‘_3”‘], (4) 

and we directly analyse the second bracket term of (4). Indeed, this gives an equivalent 
for d w an: 

[(l-L&( _y]_$(l -3”‘_ +,+ _~J$w, 

which immediately leads to the asymptotic expression of the covariance. 

7.2. P3/@ bounded urns and insertions 

In this case, the number of balls at the time tl is n, = nt, . The approximate value of 
the probability Zi that the urn Vi is empty at the time tl is given by Lemma 2, with 

f1(t) = t: 

The probability that the urn Vi is empty at the time tl and at the time t2 is again 
simply the probability that it is empty at the time tZ: 

( ) 
b 

Z i,i 1.2 N 
1-41 

B . 

The joint probability that the urn Vi is empty at the time tl and that the urn Uj is 
empty at the time t2 is 

with p’ = p - 6/n and @” = /? - tl. So, asymptotically, Z$,j2 N (1 - tJ/?)“(l - t2/p)d. 

By CiJ2 = Ziy2 - Zi,Zi, we obtain 
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After some computations, and with Lemma 1, we obtain 

7.3. Nonrandom static structure 

We now extend the computations of Sections 7.1 and 7.2 to the general cases. Let us 
start with a nonrandom (NR) static structure, where the process total number oftuples 

follows a path fixed by nfi(t) i.e. the path is the closest to nfi(t) in the adequate 
topology (Skorohod for instance). On a short interval Dt 4 1, such that n Dt B 1, each 
step chosen at random among m has probability ps(t), p&t) or ps(t) of giving an 
insertion, a deletion or a query. 

All the results in this section depend only on the functionf, (t) specifying the number 
of balls at time t, on the probabilities p$(t), p&t) and pz(t), and on the auxiliary 
functions defined in Sections 6.2 and 6.3. We shall show that the average value of the 
projection size at time tI , E( Y,), and its covariance at distinct times tl and t2, 

CO V( Y1, Y,), both have a common form whatever the model: 

Proposition 1. For each urn model d or 9, there exist two functions F(x) and 

YNR(tl, t2) such that, if we consider a relation of size nfi(t), the size of its projection is 

a random variable with expectation at the time tI E( Y,), and covariance at distinct times 

tI and t2 CO V( Y1, Y,), given asymptotically by: 

E(Y,) - nF(f,(t,h COV(Yl, Y2) - n~A!,@,, t2). 

We shall study two examples before proving Proposition 1 in Section 7.4.3. 

7.3.1. Unbounded urns and return to an empty structure: Pljd 

We use the notations Zi(&‘) and so on to emphasize the dependence on the urn 
model. We obtain 

E(Y,) = ctn(1 - Z:(a)) N an(1 - e-rlcrl)iu) = nF(fi(tI)) say, 

with fi(t) = t(2 - t)/2. By Lemma 1, 

COV( Y1, Y,) = an [Z$‘2(d) - Z$,jz(d)] + m2n2C\;i(&). 

So we obtain 

COV - n[ge -rfl(rl)+S3(~l.r2)l/a _ ~e-D”l(tl)+flv2w~ 

n++CC 

- psI 2 fi(tl)e-[l”“‘+““““‘“] 

= nlY,&,, b) 

and ~~1.2 fi(tl) = tl(2 - tz)/2,fAt,, tz) = (1 - tz/tl)(tz - tl). 
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7.3.2. Bounded urn and queries: P~/L% 
We obtain 

4 Yl) =: Wfl (t1)) -+(l-yy), 

COV(Yl, Y2) =:~yNR(h, t2) 

- an(l -y[p2.2(tl,t2)L (1 -fy 

- n%t1f7(t1, t,)(l - 7y (1 - %)“‘. 

7.3.3 Proof of Proposition 1 
From Lemma of Section 6.1, we know that E( Y,) = d(1 - 2:) = ncl(l - Zi,). After 

some computations (given in [14]), we get 
For the model with unbounded urns, Zi, - e-rl(t)‘a, and E( Y,) - nF(fi (t)) with 
F(x) = cr(1 - e-X’“). The covariance is 

coqyl, y,) N n(cte-(fI(ll)+fscrl.~z~)/a _ C(e-(Sl(~l)+/l(t2)m 

hence CO V( Yr , Yz) - nYNR(tl, tz) for a function YNR(tl, tz) which is expressed in 
terms of the function fi (t) and f3(tl, t2): 

yJNRQl, t2) = C(e-ll(~l)l~(e-fs(~l.~z)i~ _ e-“““““) _fi(tl)ps,,,e-‘f”“‘+fl”2”‘“. 

For the model with bounded urns, Zi - (1 -fi(t)/fi)‘, and E( Y,) - nF(fi(t)) with 
F(x) = a(1 - (1 - x/p)“). Using the functions defined in Section 6.3, we get an 
expression of the covariance as 

COV(Yl, Y2) ‘v +(I _b$d)“[ P2,2@I,t2)6 - (1 Jy)‘] 

-f1(t1)f7(t,, r,)(l +y(I -y)y, 

hence COV( Y1, Y,) - n’Y,,(t,, t2) for a suitable function YNR(tl, tz) given below 
(we recall that p2,2 andj, are functions of tl and t2): 

VlNR@l, t2) 

= (1 -yy[api,2 - (1 -yy(ap2,2 + (1 -;)f1(w7)]. 
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8. Random structure 

We can generalize the techniques we used in [27]. We recall that Y1 and Y, denote 
the size of the projection of a relation R at the times tr and tz, when the number of 
tuples of R is given by the process So, and that S1 and S2 denote the same quantities 
when the number of tuples of R is given by the process 8. We first compute the 
variation of CO V( Yr, Y,) introduced by assuming that the numbers of tuples are no 
longer fixed, but Gaussian random variables; this gives a term that we call nYc(tl, t2). 

Then we compute the actual covariance of S1 and S2 and we show that it is of the type 
nYR(tl, tz); its form shows that the size of the projection is a Gaussian process. Below 
we state our result, before proving it in the rest of this section. In the following 
theorem, fi and fi are relative to the expectation and covariance of the process 
associated with the initial relation, and y(t) = F’(fi(t)). 

Theorem 8.1. In the projection model, the size of the projection S([nt]) is a (not 
necessarily Markov) Gaussian process with 

E[S([nt])] - nG(t), with G(t):= F(f,(t)), 

ElR[S([nt])] - n@(t) with G(t):= Y&, t) = YNR(t, t) + y2(t)f2(t, t). 

The relative error in the density is 0(1/G). 

8.1. The perturbation on the expectation and covariance of Y1 and Y2 

In this part, we take into account the random part of the number of balls W([nt]). 

As the process $9 is obtained by adding a process 8i or order & to the process PO, 
itself of order n, the respective numbers of balls at the times tl and t2 are 

where 0r and e2 are Gaussian random variables with mean 0 and covariancef2(s, t): 

for any cl and c2, 

Set 

Y w= wl (a. (7) 
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From Proposition 1 of Section 7, we have that E [ YJ m nF(nr/n), and with (5) this 
gives 

A similar relation holds for E[ Y,]. Now, injecting the values of nr and nz given by 
the formulae (5) into the covariance CO V( Y1 , Y,) = nYNR(tI, t2), we get a new value 
n~c(tr , t2), with 

for some @r and CpZ, and for ul,, computed in Section 7.3.3 according to the type of 
urn. 

8.2. The covariance of S1 and SZ 

We know from previous work [ 121 that, for a known size of the initial relation R at 
the times t, and t2, the projection sizes Yr and Y, are asymptotically normal. Then for 

any cl and L 

Plugging into this equation the modified values for E[ Y,] and E[ Y2], and substitu- 
ting nYc(t,, tz) for COV( Y1, Y,) (and similarly for oz( Y,) and a2( Y2)), we obtain an 
expression for the expectation E [e’(rJI + ~Jz)]: 

with 

MI, t2) = iCSlnKfi@l)) + t2nF(fl(t2))l 
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The term B(t, , t2) contains all the contribution from the random variables 8i and 
0x and is of the form i([re, + it&); this leads, with (6), to 

ECe B(tl*t*)l N exp( - in CSW(~~~~(~I~ h) + 25152~(~1)~(b)f2(~1, b) 

+ &*(t2)f2(t2, t2) + cubic terms in 5i, r2 + O(l/&)]). 

Let us define 

G(t) = Wl(~)), Y&l, t2) = Yw&l, t2) +f2@1, t*)Y@l)Y@*). 

We get 

E [e’(rJI + tzsz)] N exp(i [rinG(t,) + 52nG(t2)] 

- fC5:flYR(k t1) + 25152nYk(t,, t2) + 422nuk(t2, t2)l 

+ cubic terms in cl, t2 + 0(1/h)). 

Now we remember that we are actually interested in the normalized process 

S’([nt]) = (S([nt]) - nG(t))/&. Substituting t_‘J& for t1 and &/& for t2, we get 

E[ei(GG + GS;)] w exp( - f&* Y&i, ti) + 21;5;Yk(tl,t2) + 5;2YR(t2, t2)] 

+ 0(1/J;;)). 

which proves Theorem 8.1. 

8.3. Examples 

Let us illustrate our technique with two examples. We choose two distinct pro- 
cesses, corresponding to two types of operation in the infinite model. In Section 7.3, 
we derived the following results for the model with unbounded urns: r(t) = e-fl(t)ia 
(see (7)) and 

G(t) = F(f,(t)) = ~(1 - e-fl(‘)ja); 

YIN,R(tl, r2) = ae - [fi(tl) +hctl, t2)lla _ ae - Cfictl) +fi(t*)lia 

_ psl,zfi(tl)e - Cf*(tl) +fi(t*ll/a. 

1. Pi/d: weighted process with insertions and deletions. For a sequence of insertions 
and deletions, starting from and arriving at an empty relation, we have 
fr(t) = t(2 - t)/2 and f2(t1, t2) = tf(2 - t2)*/4. The survival probability is 
p~i,~(ti, t2) = (2 - t,)/(2 - ti), andf3(t1, tz) = (1 - t2/2)(t2 - ti). Theorem 8.1 leads 
to 

E[S([nt])] w ncc(1 - e-tc2-a’zu), 

CO V(Si, S,) - neCuia [a(e*/’ - 1) + 2’1 - ze+, 
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with 

z = h(2 - b) h(2 - t1) b(2 - h) 
2 

and c = 
2 + 2 * 

2. P5/yc4: unweighted process with insertions, deletions and queries. We study now 
a sequence of insertions, deletions and queries, starting from an empty structure and 

arriving at a structure of size 2nZ + a&. We have F(x), y(t) and YN, as above, but the 
functionsfi andf2 are those corresponding to P5: 

at 
f1(t) = xt + - 

s(2 - t) 

2&’ 
f2(S,Q=~zp, 

2 

(we recall that X = ps - p3), and PS~,~ andf3 are as follows: 

We give below the expectation and the covariance of the process size of the 

projection in this case: 

E[S([nt])] - na(1 - e -at/a) + J;; ate-Xt/a, 

COv(S1, &) N nUk(tl, Q, 

with 

9. Projection maximum 

We have shown in Section 8 that the projection size at the time nt is 

S([nt]) = nG(t) + &V(t) + O(l), 

with G a deterministic curve and V a Gaussian process. To analyse the maximum of 
S([nt]), we must first know whether G(t) has a maximum for t l ]0,2[. If G(t) is 
maximized at t = 2 then it is easily checked that S([nt]) is also maximized at t = 2. So 
assume that G’(o = 0 for a unique ?E]O, 2[ (local maxima can be analyzed similarly). 
Set G:= G(o and G” = G”(Q 

It is equivalent to analyse the maximum of S, or the maximum of the normalized 
process obtained by a change of scale in the process and in the time: 

X(t):= 
S([nt]) - nG 

& - 
V(t) + $(G(t) - G>. (8) 
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We shall use a technique based on the results of Daniels [6], which applies precisely to 
a process of the form (8), and which we recall below. 

9.1. The basic results 

Consider a Gaussian process V(t) superimposed on a curve j(t). It is equivalent to 
look for its maximum m := max [V(t) + j(t)], and the time t* at which this maximum 
occurs, or to search for the hitting time of V(t) to the absorbing boundary m - y”(t). It 
is well known (see [S]) that, near the crossing point, V(t) behaves locally like 
a Brownian motion BM, or a variant of it, such as a Brownian bridge BB. It is also 
known that the hitting time and place densities for a BB can be deduced from the 
hitting time density for a BM (see for instance Louchard [25] for a constant boundary 
and Csaki et al. [S] for a general proof). 

Assume that j(t) is given by 

j(t) = &y(t), n B 1 (9) 

and that it has a unique maximum at f, with ~(0 = 0 (if necessary, we translate the 
origin). Daniels and Skyrme [7] have computed the asymptotic hitting time and place 
density. In the Gaussian process case, with covariance C(s, t), s < t, Daniels [6] has 
matched the local behaviour of C(s, t) with the BM (or one of its variants) covariance 
near t. In the BB match, we have 

Cl’(t) + &Y@)I - ,hCWt - &I) + ,hdt - Ml on t E @o, to + Th 

where BB(T) = 0, y(t) G cp(t - to) and A is some constant. We can deduce the density 
of the maximum m and time t* from Daniels [6, (3.8)] and Daniels and Skyrme 
[7, (5.9)]. We first need to introduce some notations. Let 

Cl I= [a,C(S, t)]i > 0, C2 I= [a,C(S, t)]r < 0, c:= C(t; 0, (10) 

to := t - C/Cl , to + T:= t+ c/lczl, T:= cAl(c~ I G I), (11) 

A:= Cl + ICZI, B:= - y"(t), u:= @A-'/3p(t* - 0. (12) 

Let also R(x):= exp(x3/6)H(x), with 

H(x):= 2P1/3& 
s 

+iw 

esX 
ds 

_, 
I* Ai( - 21’3S)’ 

Ai is the classical Airy function. Letf(x) := 2R(x)R( - x) and v(x):= H’(x)/H(x); R and 
v are tabuled in Daniels [6]; note that f’(0) = 0. Finally, define 

A:= 
s 

+ao [R(x) - x+]dx = 0.99615... 
-‘w 

The result of Daniels and Skyrme is as follows: 
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Theorem 9.1. The random variable m := max [V(t) + y(t)] is asymptotically Gaussian 
with mean and variance 

E(m) - In- 1/6~2/3~- l/3 
9 o2(m) - c. (13) 

The conditioned maximum m 1 t* is asymptotically Gaussian with mean and variance 

E(mIt*)- n-‘16A-1’3[c1v( - u) + IczIv(u)]B”3, a’[mIt*] - c. (14) 

The joint density of m and t* is given by 

cp(m, u)dmdu = 2~e~m’~(zc~~~ + n-‘/6B-1/3A-1/3m(P1(m, u) 

(15) 

with 

cpl(m, u) = - iu2f(u) 4 + R’( - u)R(u) 2 + R( - u)R’(u) y, (16) 

and where u has density f(u) . All expectations and densities have relative errors of order 
0(n-1/3). 

9.2. Application to the projection size 

From Theorem 8.1, we know that 

S([nt]) = &{,/nG + V(t) + ,/%[G(t) - G]} + O(l), 

with CO V[ V(t,), V(t,)] = YR(t,, t2). The O(1) term is non-uniform in V but it is easy 
to check that max(S) is only affected by a O(1) term. Comparing with (9), we must 
identify y(t) with G(t) - G. We can now compute 

Cl := 4, uk@l, t2)ltl=f*=t, c2 := 41uk(tl, t2)lfl=t2=t, (17) 

Cl := YJ& f), A:= cl + IczI, R:= -G”. (18) 

The result of Daniels leads to the following theorem. 

Theorem 9.2. The maximum size of the projection satisjies 

M := zq S([nt]) - nG” + m& + O(n”6), 

where m is a random variable characterized by (lo)-( 15). The time t* when the maximum 
occurs is a random variable characterized by (12), (15) and (16). The constants are given 
by (17) and (18). 
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Let us again illustrate our theorem with an example. For the unbounded urn model, 
and the process P, (no deletions or queries), the function G(t) is maximized for t = 1 so 
G = a(1 - e- l/*‘) and 

B = _ c = e- l/*a, C=C(-l/*~_cre-‘la_~e-‘/“, 

Cl = ae- 1/*a 
) c*= -cl, A = 2c,. 

Theorem 9.2 is now applicable. 

10. Proof of the theorem for joins 

In this section we prove Theorem 4.1 relative to the join models. After some 
notations, Section 10.1 describes the new bi-dimensional processes related to the total 
number of balls. Section 10.2 proves a preliminary result (Lemma 2) generalizing 
Lemma 1 of Section 6. Section 10.3 analyzes the non-random static structure related 
to the join model. Section 10.4 presents the main theorem, corresponding to the 
complete random structure. 

The function C&C) = Z(fc > 0) of Section 6 will be denoted hereafter by (pl. We shall 
need another function SD(K) = K, denoted by q2. Note that the equijoin (EJ) corres- 
ponds to cp: and cpf, and the semijoin (SJ) to cpf and cpy (the functions (pp are related to 
the relation R, i.e. to red balls, and similarly for cp”). 

10.1. Processes related to the total number of balls 

We need here bi-dimensional processes related to red (R) balls and blue (B) balls. 
Let us mention for instance: 
l P8: Here we have red (R) balls and blue (B) balls, furnished by independent processes, 

with probabilities p,“, pi, p$ and p$, pi, pf (see Fig. 2). The means and variances 
corresponding to one step are given by XR, oi, Xs, rsi as in P4 and the covariance 

R S 

Fig. 2. P8 probabilities. 
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matrix of the bidimensional BM is written as 

Remark. We can of course combine any of the processess Pi-P, of Section 5 to 
furnish independently red and blue balls. 

l P9: We have red (R) balls and blue (B) balls, with probabilities pg”, &, p$, p& ps (see 
Fig. 3), Means and variances corresponding to one step are given by ~?a, ai, Xs, 02 
as in gP4 and the covariance matrix of the bidimensional BM is written as 

RS 

Rt 

BS 

Bt 

fJ& 0;s 
- - _ - - XBXRS - XBXRS 

ais a;t 
- - 

- XBXRS - %B?Rt 
- _ 

- - - XBXRS - XBXRS U& CT& 

- _ _ - 
- XBXRS - XBxRt I s < t. (19) 

So f:(t) = XR t, f!(t) = ?B t and fi’ ‘(s, t) is immediately written down from (19). 
l PlO: We have red (R) balls and blue (B) with probabilities p:, p$, p::, p:i, p;, p& 

pg$, pgs. This process is a generalization of both P8 and P9; see Figs. 24. Set 

Fig. 3. P9 probabilities. 
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Fig. 4. PlO probabilities. 

and similarly for rrf, n& Then XR = $$ - rcg and the covariance matrix of the 
bidimensional BM is characterized by ai = n; + rr$ - Xi (similarly for c;), and 

ftsB(S, t) = CO VRVB(s, t) = (p:; + &g - p;i - &)s - _f$f~s, s < t. 

0 Pll: We now choose time-dependent probabilities in P9. Set 

gBR(S):= -f' - ()- ()d oxB s xR s s, and define 0’ as in the process P6 of Section 5. The 
covariance matrix of the two-dimensional BM is given by 

I 
ai(s) d(S) gBR(S) gBR(S) 

a:(s) d(t) gBR(S) gBR(t) 

gBR(S) gBR(S) '$ds) Gi(S) 

gBR(S) gBR@) ai(s) d@) I s < t. 

Time-dependent probabilities can be similarly introduced in PlO. 

10.2. Preliminary result 

Let Y, := ~l,i,,cp(rc~)t+#) for any measurable cp and $, where I&(&) is the 
number of red (blue) balls at time tl in urn Vi. The properties of Y1 are given by the 
following lemma ( Y2 is relative to the time t2 ): 

Lemma 4. The mean and covariance of Y are given by 

E( YI ) = dE’, (cp)E; W), 

CO F’( Y, , Y,) = dE’i12 [q] E’i;2 [I/?] - dE’i,jz [q] Et’, [+] 

+ d2 CE’, Cvl Ei Ccpl C;!2 [+I + E’, [$I E’, [$I Cii:z Cql 

+ w2 [VI Qi!2 [$I I, 
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where E\ [p], E1*j2 [q] are defined as in Section 6 and with 

Ci!2[cp]:= CPr(Kil = k,)q(k,)C[P r ( ICY = k2 1 Ki = k,) - Pr(K< = k,)]rp(k,) 
kl kz 

= E$:2 [q] - E’, [q] E: [q]. 

Proof. 

CO V = dE’j’, [q] Eij,$ [11/l + d(d - 1) E$,j2 [q] E’i,$ [#] 

- d2El CdEi Cvl J% [+I EJ; [+I 

= dE’i’2 [47] E’i’2 [+] - dE’i,jz [q] Ei,‘2 [t,b] - d’E’1 [q]E’, [q] E’, [I,&$ [$] 

+ d2(E: Cvl J% [VI+ C’ij2 Cd)@‘; CILI E’, [$I + Cii:2 [$I), 

which proves the lemma. 

10.3. Nonrandom static structure (NR) 

The quantities Ei, Ei’2 for (pl are given in Lemma 1 of Section 6.1. We need similar 
expressions for cp2(rc) = IC. We can derive the following result, which can be found in 
a more detailed form in [15]: 

Proposition 2. For each join model, there exist two functions Fc , .) and t,bNR(t 1, t2) such 
that 

Let us give two examples. 
P9/[dR, dB]/EJ: Equijoin, with unbounded urns and probabilities ps, p& ps, p& ps. 

This leads to 

E(K) = 
fP(h) f?(h) an-----=nF(~~(tI),f~(tI))=n~, 

OL ci 

COV(Yl, Y2) 
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-n 
i[ 

f PS1,2fl@l) + fl@l)fl(~2) R 
cI I[ ps1,2 fl(tl) +fl@l)fl@2) B 

tl 1 

We use here the notation [exprlR to indicate that the quantities inside the brackets 
are the one relative to red balls, and similarly for [exprlB and blue balls. 

l P9/[~24~, .$%qjSJ: Semijoin, with unbounded urn for red balls, bounded urns for blue 
balls and probabilities p:, p& p$, p& pl. This leads to 

E( Y,) = crnE$R(d, cp2)E$B(%3, qI) = ..$+ -(I _6py 

COUYl, Y2) 

N dE>,‘iR(d, (P~)E:,‘~~(L@, cpl) - dE>;‘iR(ccx?, cpz)E:;iiB(W, cpl) 

+ d2 [EtR(d, cpz) EkR(d, (~2) C~,+“(% cpl) 

+ E:“(% cpl) E$B(99, cpl) C~;‘i”(&, qz) + Cf:ji”(c& 402) C:;‘i”(A?, cpl)] 

N n 
i[ 

p~~,~f~(t~) +fi(t1)‘1(t2) R 
0: 1 

x Cl - Zl;@, cpl) - z’,@t cpl) + Ziiiz(% cpI)lB 

J f t1 ( 1” t2 ‘& ( )[l - z;(w, cpl) - Zj,(W, cpl) + zii;#J, cpl)lB 

-fP@1)_m2) y 
[ 
-h(rl,r,)(l __y)yl +_y] 

- [l - [I -qq][l -[I -~~],:.,fp(tl)}. 
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10.4. Random structure (R) 

Now we must analyze the two-dimensional join model. We have two underlying 

processes with 

n:=n(/:(t,)+~)+O(l). ++ivl)+~)+O(l) 
balls at t1 and 

n:=n(ff(r,)+~)+O(l), n+n(ff%)+~)+om 
balls at tZ, where 07, @, l3!, 0: are Gaussian random variables with mean 0 and 
covariancef$‘(s, t) written down from P8-Pll. 

If we fix nl, n2, the covariance COV( Y,, Y,) is given by nYc(tl, t2) with 

for some Cp, and ul,, is computed in Section 10.3. Set 

and similarly for yB(t 1). We now obtain the following result: 

Theorem 10.1. In the join model, the size ,S([nt]) of the join at the time nt is asymp- 

totically given by a (not necessarily Markov) Gaussian process with 

E[S( [nt])] N nG(t) with G(t):= F [ff(t),ff(t)], 

cov(s1, s2) N nyR(tly b), 

with 

IYR(tl 7 b):= yh'R@l, h) 

+ rRh)YRwfiR~R(tl~ a + rR(~l)YB(w-2R’B(~l, b) 

+ rBwrR(w-~R(tl~ b) + YB(h)rB(uf~B(~l~ Gr 

KU CS( CnQ )I - n [%,Rh t) + yR(~)Zff’R(& t) + 2yR(~)yB(~)f?B(h t) 

+ YB(vf~B(4 01. 

The relative error in the density due to the asymptotic approximation is 0(1/G). 
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Proof. We derive 

Eei[&Sl +t;z&l 

The last term leads to 

exp 
i 

- ;c4tvR(tI)“f2R%~ t1) + rtrR(~2)2_l-iR9R(~2~ t2) 

+ r:YB(h)2f;‘Bh h) + 5;YB@2)2.f2B’B@2, t2) 

+ 2rlr2rR(El)rR(t2)f2R,R(~~, t2) + 25:YR(tl)rB(tl)f~,B(tlr t1) 

+ 2r,r2YR(tl)YB(t2)f~,B(tl, t2) + 25:rR(t2)YB(t2)fiR,B(t2, t2) 

+ 2y,52YB(tl)YR(t2)fZB’R(tl, L?) + 25,52YB(tl)YB(t2)S~.B(tl, t2) 

+ cubic terms in cl, t2 + 0 (l/A)] , 

which proves the theorem. 0 

Let us illustrate our technique with one simple example (all other cases can be 
analyzed similarly). 

For P9/[dR, dB]/EJ (equijoin with unbounded urns for both red and blue balls). 

yR(tl) _ff@l), yB(tl) =rpctl, 
cc u 
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and f;*' (s, t) is directly written down from (19). Theorem 6.1 is now immediately 
applicable. This leads to 

E[S( [nt])] - n F t2, 

We should also mention that, if desired, we can characterize the distribution of the 
maximum size of a join and obtain a result similar to Theorem 9.1, by applying the 
method of Daniels presented in Section 9 of this paper. 
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