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We consider two probability distributions on Boolean functions defined in terms of their representations by and/or
trees (or formulas). The relationships between them, and connections with the complexity of the function, are studied.
New and improved bounds on these probabilities are given for a wide class of functions, with special attention being
paid to the constant function True and read-once functions in a fixed number of variables.
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1 Introduction
An and/or formula is a Boolean formula formed from literals (variables and their negations) using binary � and �
connectives (and brackets). An example is ���

x̄1 � x2 � � x̄3 � � � x1 � x̄3 ���
Corresponding to the formula is a binary planar (Catalan) tree with its leaves labelled by literals and its internal nodes
labelled by connectives. (In the above example the root is labelled � .) Assigning truth values at the leaves and
thinking of the internal nodes as logic gates, such an and/or tree computes at its root the truth value of the Boolean
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function defined by the formula. In the example above, the function is x̄3, or more precisely, the same function as is
defined by this much simpler formula.

We will use the terms and/or formula and and/or tree synonymously. n will denote the number of variables
x1 
 ����� 
 xn from which the variables in the formula are to be drawn. The size m is the number of occurrences of literals
(i.e., the number of leaves). As the tree is binary, the number of connectives (internal nodes) is m � 1 and the total
number of nodes is 2m � 1. The complexity L

�
f � of a Boolean function f is the minimal size of an and/or formula

defining f .
Fix n, the number of variables. One natural way to define a probability distribution on Boolean functions f is to

let Tm denote the total number of and/or trees of size m, let Tm
�
f � be the number of these which compute f , and put

P
�
f ��
 lim

m � ∞

Tm
�
f �

Tm
�

Lefmann and Savický [LS97] seem to have been the first to show explicitly that for each choice of n this limit distribu-
tion P (which depends implicitly on n) is well defined, i.e., that there is convergence for all f , and that in fact the limit
P
�
f � is always strictly positive. A rather different proof can be given using the methods of Woods [Woo97], who es-

tablished the analogous results for non-binary and/or trees which take account of the associativity and commutativity
of � and � , and whose size is taken to be the total number of nodes.

A second natural probability distribution π
�
f � on Boolean functions f is obtained by generating an and/or tree by

means of a random process. Start with the root and throw a fair coin. With probability 1 � 2 decide to make the root a
leaf, throw a fair 2n-sided die to decide which literal will be its label, and then stop. With probability 1 � 2 make the
root an internal node and then throw the coin again to decide which connective � or � will be its label. Then repeat
the process with each of the two “daughter” nodes in place of the root.

Technically this is a critical Galton–Watson branching process. With probability 1 the tree is finite. The prob-
ability π

�
f � is simply defined to be the sum of the probabilities associated with those finite and/or trees that com-

pute f . Notice that as with the limit distribution P, the π distribution depends on n. We will be interested in their
asymptotic behaviour as n � ∞, as well as actually calculating or estimating probabilities when n is small. In this
direction, in an early, but very interesting paper (predating the work of Lefmann and Savický) Paris, Venkovská
and Wilmers [PVW94] proved among many other things that limn � ∞ P

�
f ��
 0 for the constant functions f ��

True 
 False � .
The π distribution was first studied explicitly by Chauvin, Flajolet, Gardy and Gittenberger [CFGG04]. π is

definitely different from P (even asymptotically for n � ∞, as we will see below). However as they found, there are
some important relationships between these distributions. The extensive calculations reported in [CFGG04] led them
to also make conjectures regarding the relationship between the numerical values of π

�
f � and P

�
f � for particular

functions f . Some of these conjectures are settled here. We will prove that P
�
f ��� π

�
f � for f � � True 
 False � ,

while on the other hand, if f is a read-once function of some fixed set of r variables then for n sufficiently large,
P
�
f ��� π

�
f � .

For other variants of and/or formulas and the corresponding probability distributions see [CGW05],[CFGG04]
and [SW98]. Analogues of P

�
True � have also been studied for tree-like formulas involving other connectives

[MTZ00, Zai03, Zai04, KZ04, Mat]. Mostly the results are restricted to explicit small values of n. Exceptionally
Moczurad, Tyszkiewicz and Zaionc [MTZ00] have shown that for formulas in n variables (without negation) hav-
ing implication as the only connective, the probability of a tautology P

�
True � lies in the interval � � 4n � 1 � � � 2n �

1 � 2 
 � 3n � 1 � � � n � 1 � 2 � . However they do not seem to address the convergence issue for general values of n. In a
similar vein, Matecki [Mat] has studied the probability of True when equivalence is the only connective, obtaining
results valid for all n.

Which of these various models is of most significance? Well it depends on the situation. If short formulas are
of importance, the π distribution may be suitable. If the formulas are large, then P (which is, roughly speaking,
π conditioned on the size m being large) is more appropriate. As noted in [MTZ00], there is a correspondence
between intuitionistic implicational tautologies (without negation) and inhabited types in λ-calculus. (However not
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all Boolean functions can be defined using only implication and variables.) In another arena, if a close relationship
with the underlying Boolean function is needed, e.g., if the real aim as in [SW98] is to estimate the number of Boolean
functions defined by and/or formulas of some type, then it may be desirable to regard formulas as being “the same”
if they can be converted into each other by means of the commutative and associative laws for � and � . And so on. A
decided advantage of the particular distributions π and P considered here is that they are less complicated to analyse
than some of the others, while presumably often having qualitatively similar properties.

One reason for interest in probability distributions for Boolean functions f is the suggestion (appearing in [Woo97]
for an analogue of P

�
f � ) that the probability of f might be related to its complexity L

�
f � . Lefmann and Sav-

ický [LS97] proved that for P
�
f � this is indeed the case. In fact for some constant c � 0,

1
4

�
1
8n � L � f  "! 1 #

P
�
f � # �

1 � O
�
1 � n ��� exp

� � c
L
�
f �

n2 � � (1)

where the upper bound incorporates an improvement from Chauvin, Flajolet, Gardy and Gittenberger [CFGG04].
Lefmann and Savický prove their bounds by associating the limit distribution P with a distribution on certain sets of
and/or trees having an infinite branch. Here we will sketch an alternative proof of a sharper lower bound by using
generating series (and avoiding infinite trees). As a bonus, the proof also provides an analogous lower bound for π

�
f � .

The plan of the paper is as follows: In Section 2, the connections between the two probability distributions and the
generating functions for classes of and/or trees are recalled. These connections, which underlie the whole paper, are
used in Section 3 to give improved lower bounds on π

�
f � and P

�
f � in terms of the complexity L

�
f � and number k

�
f �

of minimal size representations of f . The main idea is to deal with a subset of the trees which compute True which is
both simple to describe and sufficiently large. Then in a move of particular significance for P

�
f � , the lower bounds for

this set of tautologies are “transferred” to obtain lower bounds for any Boolean function f . In Section 4 we consider a
variety of simple Boolean functions, comparing our lower bounds numerically with the exact values for small n, and
with the Lefmann/Savický lower bound (1) when n is large. This is followed in Section 5 by comparisons between
the exact values of the probabilities P

�
f � and π

�
f � for constant and read-once functions f . We conclude with some

discussion and a conjecture in Section 6.

2 Generating functions for and/or trees
The generating function T

�
z ��
 ∑∞

m $ 1 Tmzm enumerating the class T of all and/or trees by size m satisfies

T
�
z ��
 2nz � 2T

�
z � 2 �

Solving this gives

T
�
z �%
 1

4 & 1 �(' 1 � 16nz ) � (2)

Expanding as a power series in z using the binomial theorem shows that the number of and/or trees of size m is

Tm 
 2m * 1 � 2n � mCm * 1 + �
16n � m

8m ' πm 

where Cm * 1 is the

�
m � 1 � th Catalan number. Clearly T

�
z � has radius of convergence ρ 
 1 � � 16n � , and T

�
ρ ��
 1 � 4.

(More details of items in this section can be found in [CFGG04].)

Similarly for any class E of and/or trees, let E
�
z �,
 ∑∞

m $ 1 Emzm denote the corresponding generating series. It is
easy to check that for any and/or tree τ of size m, the probability that τ is the tree generated by the Galton–Watson
process described above is 2 * 2m ! 12 * m ! 1 � 2n � * m 
 4ρm, so the definition of π can be extended to E by putting

π
�
E �%
 4

∞

∑
m $ 1

Emρm 
 4E
�
ρ � 
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which always converges. In general Em � Tm need not converge to a limit P
�
E � . However if this limit does exist it must

satisfy

P
�
E �%
 lim

m � ∞

Em

Tm

 lim

z � ρ * E - � z �
T - � z � �

This follows from an easily proved Abelian theorem which uses only that the derivative T - � z � has positive coefficients
and diverges at z 
 ρ. To establish convergence, we will appeal to the following standard lemma, the idea being that
(under certain conditions) if E

�
z � has the same form of singularity at ρ as (2) then its coefficients will be asymptotic

to those of βE T
�
z � , for some constant βE .

LEMMA 1 Let E be a class of and/or trees. If the corresponding generating function E
�
z � has on the circle.

z
. 
 ρ, a single dominant algebraic singularity at ρ 
 1 � � 16n � , and around ρ has an expansion E

�
z ��
 �

αE �
βE ' 1 � 16nz � � 4 � o

� ' 1 � 16nz � , then

π
�
E �%
 αE 
 4E

�
ρ � ; P

�
E �%
 βE 
 lim

z � ρ * E - � z �
T - � z � � (3)

For any Boolean function f we will denote by T f the class of all and/or trees which compute f . Tf
�
z � will be the

corresponding generating function. As noted in [CFGG04] (cf. [Woo97]), on the circle
.
z
. 
 ρ, T f

�
z � always has only

an algebraic singularity at ρ 
 1 � � 16n � , with

Tf
�
z ��
 1

4 & α f � β f / 1 � z � ρ )0� O
�
z � ρ �

near ρ for some constants α f 
 β f � 0. So by the Lemma, P
�
f � exists, P

�
f � is positive, and

π
�
f ��
 α f 
 4Tf

�
ρ � ; P

�
f ��
 β f 
 lim

z � ρ * T -f � z �
T - � z � �

3 Improved lower bounds
For n variables, there is a system of 22n

quadratic equations in the generating functions Tf
�
z � (with f ranging over all

possible Boolean functions of n variables) which in principle can be solved for these 22n
generating functions. (See

[CFGG04] for the details.) The underlying idea of our lower bound method is that simpler equations which are easier
to solve can still give interesting bounds (instead of exact values) for the probabilities. Rather than work with the
whole set T f of all trees that compute f , we will work with a more easily described subset E f 1 T f obtaining lower
bounds on π

�
f � and (provided P

�
E f � exists) on P

�
f � .

Let us begin by considering the set of all and/or trees, and a proper subset ETrue 2 TTrue. So ETrue is a set of
some of the and/or trees that compute True. ETrue is defined (in obvious notation) by

ETrue 
 3 1 4 i 4 n
� � 
 xi 
 x̄i �536�7�7��3 1 4 i 4 n

� � 
 x̄i 
 xi ��3 � � 
 ETrue 
 ETrue �83 � � 
 ETrue 
 ETrue �3 � � 
 ETrue 
 T 9 ETrue �83 � � 
 T 9 ETrue 
 ETrue �:�
A symmetrical equation defines a set EFalse consisting of some of the trees that compute False. Now let ETrue

�
z � be

the generating function that enumerates the set ETrue. It satisfies the following equation, in which T
�
z � is the function

enumerating all and/or trees on n literals:

ETrue
�
z ��
 2nz2 � 2ETrue

�
z � T � z �:�

We obtain ETrue
�
z �%
 �

2nz2 � � � 1 � 2T
�
z ���%
 zT

�
z � ; hence

ETrue
�
z ��
 ρ

�
1 � ' 1 � 16nz �

4
� O

�
z � ρ �
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for z near ρ. Using Lemma 1 (the conditions for which are clearly satisfied) we can read off π
�
ETrue �;
 ρ, P

�
ETrue �<


ρ. Recalling that ρ 
 1 � � 16n � , these give the common lower bound:

THEOREM 2 π
�
True �5= 1

16n
; P

�
True �5= 1

16n �
Of course the same bounds apply to False. Notice also that as ETrue

�
z ��
 zT

�
z � , we even get a lower bound on the

number Tm
�
True � of trees of size m which compute True, namely

Tm
�
True �>= 2m * 2 � 2n � m * 1Cm * 2 where Cm * 2 is a Catalan number.

Now define a subset Ex of the trees that compute the literal x by

Ex 
 �
x � 3 � � 
 Ex 
 Ex �83 � � 
 Ex 
 Ex �83 � � 
 ETrue 
 Ex �?3 � � 
 Ex 
 ETrue �3 � � 
 EFalse 
 Ex �?3 � � 
 Ex 
 EFalse �@�

The generating function Ex
�
z � for this set satisfies the equation

Ex
�
z ��
 z � 2Ex

�
z � 2 � 4Ex

�
z � ETrue

�
z � 


which gives

Ex
�
z �%
 1

4

�
1 � z � z ' 1 � 16nz �BA 1 � 10z � 2z2 � 16nz3 � 2z

�
1 � z � ' 1 � 16nz � �

Expanding Ex
�
z � near its singularity ρ 
 1 � � 16n � gives

Ex
�
z �%
 1

4 & αx � βx ' 1 � 16nz )C� O
�
1 � 16nz � 


with αx 
 �
16n � 1 � ' η � � � 16n � and βx 
 αx � ' η 
 ραx � / 1 � 10ρ � ρ2 , where η 
 256n2 � 160n � 1. Hence

π
�
x �5� 16n � 1 � ' η

16n 
 1
4n

� 3
64n2 � O

�
1 � n3 � ; P

�
x �5= 16n � 1 � ' η

16n ' η 
 1
64n2 � 1

128n3 � O
�
1 � n4 �:�

What we have just done for literals can be mimicked for any Boolean function f D� � True 
 False � . Let us consider
a Boolean function f D� � True 
 False � , let L

�
f � be its complexity (i.e., the number of leaves in the trees of smallest

size representing f ), M
�
f � be the set of such trees of minimal complexity, and k

�
f �,
 .

M
�
f � . the number of these

trees. Next define a subset E f of the trees that compute f by

E f 
 M
�
f �C3 � � 
 E f 
 E f �83 � � 
 E f 
 E f �83 � � 
 E f 
 ETrue �3 � � 
 ETrue 
 E f �?3 � � 
 E f 
 EFalse �83 � � 
 EFalse 
 E f �@�

The generating function E f
�
z � of E f satisfies

E f
�
z �%
 k

�
f � zL � f  � 2E2

f
�
z � � 4E f

�
z � ETrue

�
z ���

Using the form of ETrue
�
z � found above, it can be checked that E f

�
z � has only one dominant singularity on

.
z
. 
 ρ,

namely at ρ, and that this singularity is algebraic. (We omit the details.) Expanding E f
�
z � around ρ, we get

E f
�
z ��
 1

4 & α f � β f / 1 � z � ρ ) � O
�
1 � z � ρ � 
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where, setting µ
�
f �%
 8k

�
f � ρL � f  � � 1 � ρ � 2 , we have

α f 
 �
1 � ρ � & 1 � / 1 � µ

�
f � ) ; β f 
 ρ E 1/ 1 � µ

�
f � � 1 F �

Finally we apply Lemma 1 to get lower bounds for the probabilities P
�
f � and π

�
f � :

THEOREM 3 For any non-constant Boolean function f , if L
�
f � is the complexity of f and k

�
f � is the number of trees

of minimal size L
�
f � that compute f , then

π
�
f �5= �

1 � ρ � & 1 � / 1 � µ
�
f � ) ; P

�
f ��= ρ E 1/ 1 � µ

�
f � � 1 F 


where ρ 
 1 � � 16n � and

µ
�
f � : 
 8 k

�
f � ρL � f  �

1 � ρ � 2 �
From this Theorem, we can obtain weaker bounds, easier to compute, but (in the form involving k

�
f � ) asymptotically

equivalent for large n.

COROLLARY 4 π
�
f �5= 4k

�
f ��

16n � L � f  = 2�
8n � L � f  ; P

�
f ��= 4k

�
f ��

16n � L � f  G! 1 = 1�
8n � L � f  "! 1 �

Here we have used the inequality k
�
f ��= 2L � f  H* 1. This is related to the “folklore” fact that minimal and/or trees

for f are rigid, and can be proved by induction on L
�
f � . The case L

�
f �,
 1 is trivial. If L

�
f �5� 1, observe that in a

tree representation of f of minimal size, the root has two daughters computing f1 and f2, say. Either f 
 f1 � f2 or
f 
 f1 � f2. Notice that f1 D
 f2. For if f1 
 f2 then f 
 f1 
 f2 and the representation of f cannot be minimal. Clearly
the two daughters must also be of the minimal sizes L

�
f1 � and L

�
f2 � , and L

�
f �5
 L

�
f1 � � L

�
f2 � . By the induction

hypothesis, k
�
f1 ��= 2L � f1  I* 1 and k

�
f2 ��= 2L � f2  H* 1 giving 2L � f1  I* 1 2L � f2  H* 1 distinct minimal trees computing f . In each

case we can exchange the daughter subtrees without modifying the function computed. As f1 D
 f2 the representations
of f resulting from doing this are all different, so

k
�
f �>= 2 2L � f1  I* 1 2L � f2  H* 1 
 2L � f1  G! L � f2  H* 1 
 2L � f  I* 1 �

If we know k
�
f � , or a better lower bound on k

�
f � , we may get a substantial improvment on the bound of Lefmann

and Savický for P
�
f � . (See the numerical results below.) Even if we do not know k

�
f � , we still get at least four times

their bound.

4 Numerical results
For several Boolean functions, we will compare our lower bound for P

�
f � with that of Lefmann and Savický, and

numerical values of our best lower bounds with the exact values for n
#

3.J For the constants True and False, π and P are greater than 1 � � 16n � , which is much better than Lefmann and
Savický’s bound of 1 � � 2048n3 � .

π
�
True � Lower bound on π

�
True � P

�
True � Lower bound on P

�
True �

n 
 1 0 � 1339 0 � 0625 0 � 2886 0 � 0625
n 
 2 0 � 08642 0 � 03125 0 � 2094 0 � 03125
n 
 3 0 � 0642 0 � 015625 0 � 165 0 � 015625
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�
x �,
 L

�
x �%
 1, and Lefmann and Savický’s bound on P

�
x � is 1 � � 256n2 � . Our lower bound on

P
�
x � is

P
�
x �5= 1

16n KL 1A 1 � 1
2n � 1 * 1 M@� 16n  " 2 � 1 NO + 1

64n2 �
The lower bound on π

�
x � is

π
�
x �5= �

1 � 1
16n � E 1 �BP 1 � 1

2n
�
1 � 1 � � 16n ��� 2 F + 1

4n �
Let us see how these bounds compare with the actual values for n

#
3:

π
�
x � Lower bound on π

�
x � P

�
x � Lower bound on P

�
x �

n 
 1 0 � 3660 0 � 3219 0 � 2113 0 � 03268
n 
 2 0 � 1595 0 � 1390 0 � 06717 0 � 005235
n 
 3 0 � 0994 0 � 08916 0 � 0314 0 � 002087J For the functions l1 � l2 or l1 � l2 (for literals l1 D
 l2 
 l̄2), we have that L

�
f �<
 2 
 k

�
f � . Lefmann and Savický’s

bound on P
�
l1 � l2 � is 1 � � 2048n3 � . Our lower bound is

P
�
l1 � l2 �5= 1

16n KL 1A 1 � 1
16n2 � 1 * 1 M@� 16n  G 2 � 1 NO + 1

512n3 

and the lower bound on π

�
l1 � l2 � is

π
�
l1 � l2 �Q= �

1 � 1
16n � E 1 �RP 1 � 1

16n2
�
1 � 1 � � 16n ��� 2 F + 1

32n2 �
Again we compare these lower bounds with the actual values for n 
 2 
 3:

π
�
l1 � l2 � L. B. on π

�
l1 � l2 � P

�
l1 � l2 � L. B. on P

�
l1 � l2 �

n 
 2 0 � 02345 0 � 008098 0 � 03848 0 � 0002634
n 
 3 0 � 00776 0 � 00355 0 � 00995 0 � 758610 * 4J For a function l1 � l2 � l3 (with l1 
 l2 
 l3 literals in distinct variables), L

�
f ��
 3 and k

�
f �Q
 12. Lefmann and

Savický’s bound on P
�
l1 � l2 � l3 � is 1 � � 16384n4 � . Our lower bound is now

P
�
l1 � l2 � l3 �Q= 1

16n KL 1A 1 � 3
128n3 � 1 * 1 M@� 16n  " 2 � 1 NO + 3

4096n4 

and the lower bound on π

�
l1 � l2 � l3 � is

π
�
l1 � l2 � l3 �Q= �

1 � 1
16n � E 1 � P 1 � 3

128n3
�
1 � 1 � � 16n ��� 2 F + 3

256n3 

The exact values for n 
 3 are:

π
�
l1 � l2 � l3 � L. B. on π P

�
l1 � l2 � l3 � L. B. on P

n 
 3 0 � 00282 0 � 0004433 0 � 00768 0 � 94310 * 5
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 l2 
 l3 literals in distinct variables), of similar complexity L
�
f �5
 3 but

smaller k
�
f ��
 4, π

�
f �Q= 1 � � 256n3 � . Lefmann and Savický’s bound on P

�
l1 � � l2 � l3 ��� is 1 � � 16384n4 � , i.e.

the same as for the functions of the type l1 � l2 � l3. Our lower bound is

P
�
l1 � � l2 � l3 ���5= 1

16n KL 1A 1 � 1
128n3 � 1 * 1 MS� 16n  G 2 � 1 NO + 1

4096n4 

and the lower bound on π

�
l1 � � l2 � l3 ��� is�
1 � 1

16n � E 1 �BP 1 � 1
128n3

�
1 � 1 � � 16n ��� 2 F + 1

256n3 �
We check the lower bounds against the exact values for n 
 3:

π
�
l1 � � l2 � l3 ��� L.B. on π P

�
l1 � � l2 � l3 ��� L. B. on P

n 
 3 0 � 000817 0 � 0001477 0 � 00211 0 � 314410 * 5J For the function f 
 x1 xor x2 , L
�
f �,
 4 and k

�
f �%
 16; we basically have two minimal representations:

�
x1 �

x̄2 � � � x̄1 � x2 � and
�
x1 � x2 � � � x̄1 � x̄2 � , and each representation gives eight different trees. This gives:

1. For n 
 2: the lower bound on π is 0 � 630 10 * 4 and the lower bound on P is 0 � 203 10 * 5 (the actual values
are 0 � 000635 for π and 0 � 00229 �7�T� for P).

2. For n 
 3: the lower bound on π is 0 � 12310 * 4 and the lower bound on P is 0 � 26110 * 6 (the actual values
are 0 � 63510 * 3 for π and 0 � 19210 * 3 for P).

3. For large n, π
�
x1 xor x2 �Q= 1 � � 1024n4 � and P

�
x1 xor x2 �5= 1 � � 16384n5 � .

All these numerical computations show that the lower bounds for P
�
f � are quite far from the actual values of the

probabilities, when we know them! For π
�
f � the gap is not quite so large, perhaps hinting at the major contribution

of trees of the minimal size L
�
f � to both π

�
f � and our lower bound.

5 Comparison of P U f V and π U f V
We will now compare the probabilities P

�
f � and π

�
f � for some particular Boolean functions f . If S is a set of Boolean

functions, write P
�
S ��
 ∑ f W S P

�
f � .

LEMMA 5 (PARIS, VENCOVSKÁ AND WILMERS [PVW94]) Fix k in the interval 0
#

k
#

1. Let S
�
k � be the set of

all Boolean functions f :
�
True 
 False � n � �

True 
 False � such that 2 * n . � x � � True 
 False � n : f
�
x �X
 True � . 
 k �

Then P
�
S
�
k ��� � 0 as n � ∞.

Let f be a function of x1 
 x2 
 ����� 
 xr. Considering f to be a function of x1 
 x2 
 ����� 
 xn which does not depend on the
variables xr ! 1 
 xr ! 2 
 ����� 
 xn, the probabilities P

�
f � and π

�
f � make sense for all n = r.

THEOREM 6 Suppose that r is fixed and f
�
x1 
 x2 
 ����� 
 xr � is any Boolean function that depends essentially on all of

the r variables x1 
 x2 
 ����� 
 xr . Then P
�
f ��
 o

�
n * r � as n � ∞.

PROOF: As the function f depends essentially on all of x1 
 x2 
 ����� 
 xr, distinct choices of 1
#

i1 � i2 �ZY�Y�Y[� ir
#

n
correspond to distinct functions f

�
xi1 
 xi2 
 ����� 
 xir �Q� Let S be the set of all such functions. Clearly,

P
�
S �,
 & n

r
) P

�
f �
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and S 1 S
�
k � for the fixed real number k 
 2 * r . � x � � True 
 False � r : f

�
x �,
 True � . . Applying Lemma 5 shows that

P
�
S � # P

�
S
�
k ���%
 o

�
1 � . Consequently,

P
�
f ��
 P

�
S ��\ �

n
r � 
 o

�
n * r �Q� ]

An and/or formula is read–once if each variable appears at most once (possibly negated). It is well known (see
e.g. [SW98]) that the function defined by a read–once formula depends essentially on all the variables appearing. A
Boolean function is read–once if there is some read–once and/or formula which defines it.

THEOREM 7 Fix r and suppose that f
�
x1 
 x2 
 ����� 
 xr � is any read–once Boolean function of r variables. Then

lim
n � ∞

P
�
f �

π
�
f � 
 0 so certainly P

�
f ��� π

�
f � once n is sufficiently large.

PROOF: We can assume that f depends essentially on all of the variables x1 
 x2 
 ����� 
 xr. By Theorem 6, it is only
necessary to show that π

�
f �%= crn * r for some constant cr � 0. However we saw in Section 3 that π

�
f �,= 2

�
8n � * L � f  ,

and as L
�
f ��
 r for the read–once function f , this lower bound is indeed of the form crn * r . ]

For example, P
�
x1 �^� π

�
x1 � , P

�
x1 � x2 �^� π

�
x1 � x2 � and P

�
x̄1 � � x̄2 � x3 ���^� π

�
x̄1 � � x̄2 � x3 ��� once n is large

enough.

We now return to considering the probability that an and/or formula is a tautology.

THEOREM 8 P
�
True ��� π

�
True � for all n.

PROOF: As before, T , Tx and TTrue will denote respectively the class of all and/or trees, the class of all trees
computing the literal x, and the class of all trees computing the constant function True. The corresponding generating
functions are T

�
z � , Tx

�
z � and TTrue

�
z � . Consider the class

G 
 3 1 4 i 4 n
� � 
 Txi 
 T x̄i � 3_�7�T�`3 1 4 i 4 n

� � 
 T x̄i 
 Txi �3 � � 
 TTrue 
 TTrue � 3 � � 
 TTrue 
 TTrue �3 � � 
 T 9 TTrue 
 TTrue � 3 � � 
 TTrue 
 T 9 TTrue �:�
Clearly G 1 TTrue. The generating series G

�
z � for G is given by

G
�
z �%
 2nTx

�
z � 2 � 2TTrue

�
z � T � z ���

Each of the functions T
�
z � , TTrue

�
z � and Tx

�
z � on the right has radius of convergence ρ 
 1 � � 16n � and on their

circle of convergence only an algebraic singularity at z 
 ρ, so the same is clearly true of G
�
z � . Similarly, for z near

ρ, G
�
z ��a & α � β / 1 � z � ρ )%� 4 for some positive constants α 
 β. Using Lemma 1 we see that P

�
True �Q= P

�
G �5


limz � ρ * � G - � z � � T - � z ��� . Now

G - � z �%
 4nTx
�
z � T -x � z � � 2T -True

�
z � T � z � � 2TTrue

�
z � T - � z �

and dividing by T - � z � gives

P
�
True �b= lim

z � ρ * G - � z �
T - � z � 
 4nTx

�
ρ � lim

z � ρ * T -x � z �
T - � z � � 2T

�
ρ � lim

z � ρ * T -True
�
z �

T - � z � � 2TTrue
�
ρ �


 nπ
�
x � P � x � � 1

2
P
�
True � � 1

2
π
�
True ���

So P
�
True �c= 2nπ

�
x � P � x � � π

�
True �d� π

�
True � , as the probabilities π

�
x � and P

�
x � of computing the literal func-

tion x are strictly positive for all n. ]
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6 Final remarks
Notice that in the case of read–once functions f of r variables, with r fixed, the lower bound π

�
f ��= crn * r from

Section 3 differs from the trivial upper bound

π
�
f � # 1 \ �

n
r �

proved similarly to Theorem 6, by only a constant factor. (The constant depends on r). For P
�
f � the agreement is not

quite so good, the lower bound from Section 3 differing from the upper bound in Theorem 6 by a factor of order o
�
n � .

CONJECTURE 1 Suppose that f
�
x1 
 x2 
 ����� 
 xr � is a read–once Boolean function of r variables, with r fixed. Then

there exist constants b f and B f such that π
�
f �%+ b f n * r and P

�
f ��+ B f n * r * 1 as n � ∞.

The conjecture asserts that, aside from constant factors depending on f , the lower bounds in Corollary 4 give
correct asymptotic formulas when f is a read-once function. All the examples given in Section 4, apart from the first
and last, are read-once functions. So in particular, the asymptotic formulas for them should look like the computed
asymptotic lower bounds except for the values of the constant factors.

Random generation of and/or trees, for n 
 2, has been simulated by F. Quessette and D. Villa Moreira. This
was done for two variables x1 and x2, and e.g. the number of internal nodes equal to 1000, with 106 trees generated
at random. The random generation algorithm is as follows: first a random binary tree is generated, using Remy’s
algorithm, then a random labelling of internal nodes and of leaves takes place.

This simulation gave good agreement with the calculated values of the probabilities P
�
f � , for the 16 Boolean

functions considered. We then computed, for each Boolean function, the following parameters: height, width, number
of occurrences of � , number of occurrences of a specified literal. Simulations appear to indicate that in each case,
these parameters follow the same Gaussian limiting distribution whatever the Boolean function.
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[PVW94] J.B. Paris, A. Vencovská, and G.M. Wilmers. A natural prior probability distribution derived from the
propositional calculus. Annals of Pure and Applied Logic, 70:243–285, 1994.



And/or tree probabilities of Boolean functions 11
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