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Abstract

We consider logical expressions built on the single binary connector of implication
and a finite number of literals (boolean variables and their negations). We prove that
asymptotically, when the number of variables becomes large, all tautologies have the
following simple structure: either a premise equal to the goal, or two premises which are
opposite literals.
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1 Introduction

We consider the logical system of Boolean expressions built on the single connector of impli-
cation and on literals from k variables. Our interest lays in tautologies, more precisely in the
proportion of tautologies among all expressions of size n: our aim is to prove the existence
of a limit of that fraction as n grows to infinity, and to compute its limit. This limit gives,
in a way a measure of the “density” of truth for the logic of implication and literals over k
variables. After isolating a special class of expressions called simple tautologies, for which we
can compute explicitely the asymptotic density for large k, we prove that asymptotically all
tautologies are simple.

The present work is part of a research in which the likelihood of truth is estimated for
various propositional logics with a finite number of variables. A result correlated to our study
was presented in [4] about the simpler logic equipped with implication and positive literals
only. For the purely implicational logic of one variable, and at the same time simple type
systems, the exact value of the density of truth was computed by Moczurad, Tyszkiewicz
and Zaionc [14]. The tautologies over purely implicational logic studied there correspond to
inhabited types in simple lambda-calculus and the question of enumerating them had been
raised earlier by Statman [16] – for more about motivations, we refer the reader to [14] and
references therein. The classical logic of one variable and the two connectors of implication
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and negation was studied in Zaionc [19]; over the same language, the exact proportion be-
tween intuitionistic and classical logics has been determined by Kostrzycka and Zaionc [10].
Some variants involving expressions with other logical connectives have also been consid-
ered. Genitrini and Kozik have studied the influence of adding the connectors ∨ and ∧ to
implication [7], while Matecki [13] considered the case of the single equivalence connector.
For two connectors again, the and/or case has already received much attention – see Lef-
mann and Savický [12], Chauvin, Flajolet, Gardy and Gittenberger [1], Gardy and Woods [6],
Woods [18] and Kozik [11]. Let us also mention the survey [5] on the probability distributions
on Boolean functions induced by random Boolean expressions; this survey deals with the
whole set of Boolean functions on some finite number of variables, whereas the present work
is an in-depth study of the expressions that compute the constant function True in a specific
system for propositional logic.

The organization of the paper is as follows. We present our propositional system and the
basic definitions in Section 2, then recall in Section 3 some necessary facts about generating
functions and asymptotic methods that we shall use to obtain our main results. We prove
asymptotic results for the logic equipped with the binary connector of implication and a finite
number of positive and negative literals in Section 4. We show there our main result: When
the number of Boolean variables grows to infinity, asymptotically all the tautologies have one of
their premises equal to their goal, or have two opposite literals among their premises. Finally
we present some concluding remarks in Section 5.

2 Formulae over implication and negative literals

Definition 1 Let {x1, x2, . . . , xk} be a set of Boolean propositional variables. We define Fk

to be the set of all Boolean expressions (or formulae) over the literals {x1, x̄1, . . . , xk, x̄k}
and the implication connective →: Boolean expressions are defined recursively from Boolean
literals and the implication connective by the following grammar:

F := x1 | x̄1 | . . . | xk | x̄k | (F → F ).

An expression of Fk naturally computes a Boolean function over the variables {x1, . . . , xk}.
Notice that we do not obtain all the functions expressible in the whole implicational-negational
fragment of the logic: For example the function ¬(x → y) is not expressible within this logic.

Obviously the expressions can be represented by full (without unary nodes) binary planar
trees, whose nodes have been suitably labelled: the internal nodes by the connector →, the
leaves by some Boolean literals. From now on, we shall use indifferently “tree” or “expression”.

We define next a canonical form of an expression. Let T be an expression. It can be
decomposed with respect to its right branch; hence it is of the form

A1 → (A2 → (. . . → (Ap → α) . . .)),

where Ai ∈ Fk and α ∈ {x1, x̄1, . . . , xk, x̄k}. We shall write this as

T ≡ A1, . . . , Ap → α.

The expressions Ai are called the premises of T and the rightmost leaf of the tree α is called
the goal of T . We shall denote the goal of a tree T by r(T ). The goals of the premises of T
(i.e., r(A1), . . . , r(Ap)) will be called the subgoals of T . Of course the expression T = A1 →
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(A2 → (. . . → (Ap → α) . . .)) is logically equivalent to Ā1 ∨ Ā2∨· · ·∨ Āp∨α, where Āi stands
for negation of Ai.

For a formula A ∈ Fk, we denote by ‖A‖ the size of A, which we define as the total
number of occurrences of propositional variables in A (or leaves in the tree representation of
this formula). Parentheses and the implication sign itself are not included in the size of a
formula. Formally,

‖xi‖ = ‖x̄i‖ = 1 and ‖A → B‖ = ‖A‖ + ‖B‖ .

Throughout this paper we denote by |X| the cardinal of any finite set X. For a subset
A ⊆ Fk we define the density1 µk(A) as

µk(A) = lim
n→∞

|{A ∈ A : ‖A‖ = n}|
|{A ∈ Fk : ‖A‖ = n}|

if the limit exists. We immediately see that the density µk is finitely additive: if A and B
are disjoint classes of expressions such that µk(A) and µk(B) both exist, then µk(A∪B) also
exists and µk(A ∪ B) = µk(A) + µk(B). Not all subsets of Fk have a well-defined density;
hence, we define

µ+
k (A) = lim sup

n→∞

|{A ∈ A : ‖A‖ = n}|
|{A ∈ Fk : ‖A‖ = n}| .

This quantity is well-defined for any family A of formulae, even when the density of A is not
known to exist.

3 Generating functions

We shall investigate the ratio of expressions that are tautologies among all expressions of
size n in the language Fk. Our interest lays in finding the limit of that fraction when n grows
to infinity. For this purpose analytic combinatorics has developed an extremely powerful tool,
in the form of generating series and generating functions. A nice exposition of the method
can be found in Wilf [17], or in Flajolet and Sedgewick [3]; see also Gardy [5, Section 5.2] for
a systematic application of these techniques to the computation of probability distributions
for Boolean functions.

Let (a0, a1, a2, . . . ) be a sequence of real numbers. The ordinary generating series for the
sequence (an) is the formal power series

∑∞
n=0 anzn. Of course, formal power series are in

one-to-one correspondence to sequences. However, considering z as a complex variable, this
series, as known from the theory of analytic functions, converges uniformly to a function
f(z) in some open disc {z ∈ C : |z| < R} of maximal diameter, and R > 0 is called its
radius of convergence. So, when R > 0, we can associate with the sequence (an) a complex
function f(z) =

∑∞
n=0 anzn, called the (ordinary) generating function for (an), defined in a

neighbourhood of 0. In the other way, as is well known from the theory of analytic functions,
the expansion of a complex function f(z), analytic in a neighbourhood of z0, into a power
series

∑∞
n=0 an(z − z0)

n is unique. For a function g(z) analytic in a neighbourhood of 0, we
shall denote by [zn]g the coefficient of zn in the series expansion of g in 0.

Many questions concerning the asymptotic behaviour of the sequence (an) can be effi-
ciently resolved by analysing the behaviour of

∑

anzn at the complex circle |z| = R. This is

1The term density is to be taken in some “physical” sense, not in a probabilistic sense: we are not dealing
with probability densities.
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the approach we take to determine the asymptotic fraction of tautologies and other classes of
expressions among all expressions of a given size.

Going back to the density of a subset A ⊆ Fk, the computation of set cardinalities
|{A ∈ A : ‖A‖ = n}| can be done through the (ordinary) generating function

φA(z) =
∑

A∈A

z‖A‖ =
∑

n

|{A ∈ A : ‖A‖ = n}| zn.

Each of the sets of expressions that we shall consider is defined recursively from simpler sets:
we build the generating functions enumerating the elements of these sets by size (number
of leaves), using univariate functions where the variable z marks the leaves, and obtain a
generating function φ(z) for the set under consideration. We then extract the coefficient
[zn]φ(z) and obtain the density of the set under study as limn→∞[zn]φ(z)/[zn]φFk

(z), where
φFk

(z) is the generating function for Fk, the set of all expressions.
To compute the generating functions for the sets of expressions relevant to our problem

requires us to know how basic constructions on sets translate on generating functions. We next
recall three constructions on classes of combinatorial objects, and their effect on generating
functions. Let A and B be two classes of combinatorial objects, with generating functions
φA(z) and φB(z). The first construction, called combinatorial sum, captures the union of
disjoint sets. The generating function of the combinatorial sum of A and B is φA(z) + φB(z).
The second construction, cartesian product, forms all possible ordered pairs of objects from
A and B – the size of (A,B) being the sum of the sizes of A and B. The generating function
enumerating this class is φA(z) φB(z). Finally the sequence construction builds all finite
sequences of objects from A. Again the size of a sequence of objects is the sum of their sizes.
The generating function enumerating this class is 1/(1 − φA(z)).

We have seen in Section 2 that a Boolean expression can be represented as a labelled binary
tree; hence we may expect that the enumeration of classes of such expressions will amount
to enumeration of suitable classes of binary trees, and will involve the classical enumeration
of binary trees by Catalan numbers. The Catalan number Cn is defined as the number of
full binary trees (i.e. every vertex has either two children or no child) with n internal nodes
and n + 1 leaves. Basic results about Catalan numbers and their generating function are
summarised below; see e.g. [3].

Proposition 2 Let C(z) be the generating function enumerating full binary trees with respect
to the number of leaves; it satisfies:

C(z) = z + C(z)2,

and is equal to:

C(z) =
1 −

√
1 − 4z

2
.

Its coefficients are

[zn+1]C(z) = Cn =
1

n + 1

(

2n

n

)

.

As an example, we obtain the generating function fk(z) for the set of all the expressions
built on k variables and their negations, and the implication connector.
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Proposition 3 The generating function enumerating the set Fk of all Boolean expressions
over k variables satisfies the equation fk(z) = 2kz + fk(z)2; it is equal to

fk(z) = C(2kz) =
1 −

√
1 − 8kz

2
.

It follows that the number of Boolean expressions of size n over k variables is (2k)nCn−1:
such an expression is obtained by labelling the n leaves with any of the literals x1, x̄1, . . . ,
xk, x̄k.

Finally, we shall make intensive use of the series expansion

[zn]
√

1 − 8kz = −(8k)n
Cn−1

22n−1
.

4 The simple structure of almost all tautologies

In this section, we study tautologies in the logic obtained from implication and (positive or
negative) literals. We denote by Tk the set of all tautologies of Fk, i.e., the set of formulae of
Fk which evaluate to True under all assignments of the variables {x1, . . . , xk}.

Lemma 4 The density of tautologies µk(Tk) exists.

Proof: For a Boolean function f over the variables {x1, . . . , xk}, consider the generating
function φf of the set of expressions of Fk computing this function. By considering functions
computed by the left and right subtrees of an expression, one can write a quadratic system
satisfied by these generating functions. It is easily checked that this system satisfies the
conditions of the Drmota-Lalley-Woods theorem, well presented e.g. in the book of Flajolet
and Sedgewick [3, Chapter VII]. It follows that the density of the set of trees computing any
given Boolean function is well-defined. This holds in particular for the function True.

We shall prove that, when the number of variables becomes large, most of the tautologies
of Fk exhibit the very simple structure presented below.

Definition 5 Simple tautologies of the first kind S(1)
k are expressions A1, . . . , Ap → α such

that Ai = α for some i ∈ {1, . . . , p}; they are all expressions of the form

. . . , ℓ, . . . → ℓ

for some literal ℓ.

Simple tautologies of the second kind S(2)
k are expressions A1, . . . , Ap → α such that Ai

and Aj are opposite literals for some i, j ∈ {1, . . . , p}; they are all expressions of the form

. . . , ℓ, . . . , ℓ̄, . . . → ·

where ℓ̄ is the negation of ℓ (i.e. ℓ̄ = x̄i if ℓ = xi and ℓ̄ = xi if ℓ = x̄i).

The set of simple tautologies is defined as Sk = S(1)
k ∪ S(2)

k .

We first evaluate the densities of simple tautologies of the first kind.
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Lemma 6 The density of simple tautologies of the first kind is asymptotically equal to

µk(S(1)
k ) =

1

2k
+ O

(

1

k2

)

.

Proof: Let S(1)[ℓ] be the set of tautologies of the first kind, relative to some literal ℓ: the 2k

sets S(1)[ℓ] form a partition of S(1)
k . A tautology of S(1)[ℓ] is a sequence of premises differing

from ℓ, followed by ℓ, then a sequence of arbitrary premises (which may now include ℓ), and
finally the goal ℓ. We can write it, in the framework of formal languages (identifying a tree
A1, . . . , Ap → α with the word A1 . . . Apα over the alphabet Fk), as

S(1)[ℓ] = (Fk \ {ℓ})∗ · ℓ · F∗
k · ℓ.

We obtain the generating function for S(1)[ℓ] as the product of the generating functions for
each of the terms:

1

1 − (fk(z) − z)
· z · 1

1 − fk(z)
· z.

Since there are 2k choices for the literal ℓ involved, the generating function for the whole set

S(1)
k of simple tautologies of the first kind is

σ1(z) = 2k · z

1 − (fk(z) − z)
· z

1 − fk(z)
.

Our next step is to prove the existence of the density, and compute its asymptotic value for
large k. We can rewrite σ1(z) as

σ1(z) =
1 + z − 4kz − (1 + z)

√
1 − 8kz

2(1 + 2k + z)
.

The singularities of σ1 come from the algebraic singularity 1/(8k) of fk, and from the cancel-
lation of the denominator, which introduces a pole −(1 + 2k). Obviously the absolute value
of this pole is larger that 1/(8k); hence the dominant singularity of σ1(z) is 1/(8k). The
asymptotic behaviour of the coefficients [zn]σ1 being determined by the dominant singularity,
and transfer theorems [2, 3] allow to obtain their asymptotic values up to an error term: The
function −(1 + z)/(2(1 + 2k + z)) takes the value −(8k + 1)/(2(4k + 1)2) at the singularity
1/(8k), and

|S(1)
k (n)| = [zn]σ1(z) = − 8k + 1

2(4k + 1)2
[zn]{

√
1 − 8kz}(1 + O(1/n))

=
8k + 1

2(4k + 1)2
(8k)n

Cn−1

22n−1
(1 + O(1/n)).

We are now ready to prove the existence and compute the value of the density of S(1)
k . We

have seen that the cardinality of the set of expressions of Fk of size n, denoted below as
Fk(n), satisfies |Fk(n)| = (2k)n Cn−1; hence

|S(1)
k (n)|

|Fk(n)| =
8k + 1

(4k + 1)2
(1 + O(1/n)).
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Hence the density of S(1)
k does exist, and we know its value; moreover we have an asymptotic

expression of this density when k in turn becomes large:

µk(S(1)
k ) =

8k + 1

(4k + 1)2
=

1

2k
+ O

(

1

k2

)

.

We now turn to simple tautologies of the second kind. Let us first give some definitions.
For a tree A, let G(A) be the multiset containing the labels of the goal and the subgoals of A;
that is, G(A1, . . . , Ap → α) = {{r(A1), . . . , r(Ap), α}}. A variable x ∈ {x1, . . . , xk} is said to
have r repetitions in a multiset of literals M if at least r + 1 elements of M belong to {x, x̄}.
We define R to be the set of trees A ∈ Fk such that G(A) has two repetitions of a variable,
or one repetition of two distinct variables.

Lemma 7 It holds that µ+
k (R) = O(1/k2).

Proof: For two generating functions f and g, we shall write f ≺ g if [zn]f(z) 6 [zn]g(z) for
all n ∈ N. For x ∈ {x1, . . . , xk}, let Rx be the set of formulae A ∈ Fk such that x has two
repetitions in G(A). By considering whether the repeated variable appears in three subgoals
or two subgoals and the goal, the generating function φRx is easily seen to satisfy

φRx(z) ≺
(

fk(z)/k

1 − fk(z)

)3

· fk(z) +

(

fk(z)/k

1 − fk(z)

)2 2z

1 − fk(z)
.

Easy calculations yield µ+(Rx) = O(1/k3). In the same way, for two distinct variables
x 6= y, the set Rx,y of trees A ∈ Fk such that both x and y are repeated in G(A) satisfies
µ+(Rx,y) = O(1/k4). Since R =

⋃

x Rx ∪ ⋃

x 6=y Rx,y, it follows that µ+(R) 6 k O(1/k3) +
(

k
2

)

O(1/k4) = O(1/k2).

Lemma 8 The density of simple tautologies of the second kind is asymptotically equal to

µk(S(2)
k ) =

3

8k
+ O

(

1

k2

)

.

Proof: For a tree A, we define U(A) to be the multiset of the goal of A and the labels of the
premises of size 1 of A. That is,

U(A1, . . . , Ap → α) = {{Ai : ‖Ai‖ = 1}} ∪ {{α}}.

Let S̃(2)
k be the set of trees A ∈ Fk such that two premises are opposite literals, and no

other repetition occurs in U(A). More precisely, (A1, . . . , Ap → α) ∈ S̃(2)
k if there exists a

literal ℓ and 1 6 i < j 6 p such that Ai = ℓ, Aj = ℓ̄, and there is no repetition in U(A)\{{ℓ̄}}.
Notice that S̃(2)

k ⊆ S(2)
k \ S(1)

k .

Let Tℓ,α,t be the set of expressions A ∈ S̃(2)
k satisfying the following conditions:

• ℓ and ℓ̄ appear exactly once as a premise in A, in this order;

• α is the goal of A;
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• A has exactly t + 2 premises of size 1.

The subset Tℓ,α,t[y1, . . . , yt+2] of Tℓ,α,t is defined as the set of expressions such that yi is the
ith premise among those equal to a literal (for all 1 6 i 6 t + 2).

Let EL be the set of all expressions differing from a literal, i.e. of size at least 2. The set
Tℓ,α,t[y1, . . . , yt+2] is described by the following non-ambiguous expression:

E∗
L · y1 · . . . · E∗

L · yt+2 · E∗
L · α.

We can now enumerate this set. The generating function for EL is fk(z) − 2kz; using the
equation that defines fk (see Proposition 3), we can write it as fk(z)2. Consequently the
generating function for Tℓ,α,t[y1, . . . , yt+2] is:

σ2(z) =

(

z

1 − fk(z)2

)t+3

.

Since
z

1 − f2(z)
=

1 + 4kz −
√

1 − 8kz

8k + 8k2z
,

we can rewrite σ2(z) as

σ2(z) =

(

1

8k + 8k2z

)t+3


P (z) −
√

1 − 8kz

⌊ t+2

2
⌋

∑

s=0

(

t + 3

2s + 1

)

(1 − 8kz)s(1 + 4kz)t−2s+2



 ,

where P (z) is an adequate polynomial. The dominant singularity of σ2 is 1/(8k). Using the
transfer theorems [3, Chapter VI], the asymptotic behaviour of [zn]σ2 is given by the first
term of the sum (s = 0), and we conclude

[zn]σ2(z) =
−(t + 3)(3/2)t+2

(9k)t+3
[zn]{

√
1 − 8kz} (1 + O(1/n)).

As in the proof of Lemma 6, we obtain that the density of Tℓ,α,t[y1, . . . , yt+2] is well-defined,
and that its value is equal to µk(Tℓ,α,t[y1, . . . , yt+2]) = (4/3)(t + 3)/(6k)t+3 =: θt.

Since the sets Tℓ,α,t[y1, . . . , yt+2] (for all 0 6 t 6 k− 2 and all (α, ℓ, y1, . . . , yt+2) satisfying

the right conditions) form a partition of S̃(2)
k , the density of S̃(2)

k exists and can be computed
as follows. For a given t ∈ {0, . . . , k − 2}, a class Tℓ,α,t[y1, . . . , yt+2] is obtained by choosing
the literal ℓ and the positions of ℓ and ℓ̄ in the sequence of premises of size 1, then the t + 1

literals of α, y1, . . . , yt+2 different from ℓ and ℓ̄. Consequently the density of S̃(2)
k is

µk(S̃(2)
k ) =

k−2
∑

t=0

2k

(

t + 2

2

)

· (k − 1) . . . (k − t − 1) · 2t+1 · θt

=

k−2
∑

t=0

(t + 3)(t + 2)(t + 1)

3t+4k
· (k − 1) . . . (k − (t + 1))

kt+1
.

We need to estimate the asymptotic behaviour of the above sum. Using (k − 1) . . . (k − t −
1)/kt+1 6 1 gives the upper bound µk(S̃(2)

k ) 6 3/(8k). On the other hand, (k − 1) . . . (k −
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t − 1)/kt+1 > ((k − t − 1)/k)t+1 = (1 − (t + 1)/k)t+1 > 1 − (t + 1)2/k gives the lower bound

µk(S̃(2)
k ) > 3/(8k) + O(1/k2). We conclude that

µk(S̃(2)
k ) =

3

8k
+ O

(

1

k2

)

.

In the same way as we did for S̃(2)
k , we can partition S(2)

k \ (S(1)
k ∪ S̃(2)

k ) into a finite
number of sets (depending on k), all of them having a well-defined density, by considering
the sequence of premises of size 1 of a tree, truncated at some suitable position. Thus the set

S(2)
k \ (S(1)

k ∪ S̃(2)
k ) also has a well-defined density. This shows that the density of S(2)

k \ S(1)
k

exists; with Lemma 6, it follows that µk(S(2)
k ) is well-defined.

In order to estimate the density of S(2)
k , we take a shorter route: Since S(2)

k \ (S(1)
k ∪

S̃(2)
k ) ⊆ R, it follows from Lemma 7 that its density is equal to O(1/k2). This shows that

µk(S(2)
k ) = 3/(8k) + O(1/k2).

It is now an easy matter to prove the existence of the density for the whole set of simple
tautologies.

Lemma 9 The density of simple tautologies is asymptotically equal to µk(Sk) = 7/(8k) +
O(1/k2).

Proof: It is shown in the proof of Lemma 8 that S(2)
k \ S(1)

k has a well-defined density, equal
to 3/(8k) + O(1/k2). Together with Lemma 6, this shows the lemma.

The last step toward the main result is to estimate the density of non-simple tautologies.

Lemma 10 The density of non-simple tautologies is asymptotically equal to

µk(Tk \ Sk) = O

(

1

k2

)

.

Proof: The densities of both Tk and Sk exist by Lemmas 4 and 9; since Sk ⊆ Tk, the density
of Tk \Sk is also well-defined. We next turn to its asymptotic evaluation. Let A1, . . . , Ap → ℓ
be a tautology. Let αi = r(Ai). Necessarily ᾱ1 ∨ . . . ∨ ᾱp ∨ ℓ computes True. Thus, there
exists i such that αi = ℓ or there exist i 6= j such that αi = ᾱj, and we can assume this is
the only repetition of variable in the multiset G(A) = {{α1, . . . , αp, ℓ}}. Indeed, by Lemma 7,
µ+(R) = O(1/k2). Hence the lemma follows from the following two claims.

Claim 1. The set N1 of all expressions A ∈ Tk \ (Sk ∪ R) such that one subgoal of A is
equal to r(A) satisfies µ+(N1) = O(1/k2).

Claim 2. The set N2 of all expressions A ∈ Tk \ (Sk ∪R) such that two subgoals of A are
opposite literals satisfies µ+(N2) = O(1/k2).

Let us prove Claim 1. Consider an expression (A1, . . . , Ap → ℓ) ∈ Tk \ (Sk ∪ R). Let
αi = r(Ai). There is a unique i0 such that αi0 = ℓ; moreover, Ai0 6= ℓ. Let B = Ai0 . The
tree B is of the form B1, . . . , Bq → ℓ with q > 1. Let C = B1; once again we can develop it
and write C = C1, . . . , Cs → γ. Let γ = r(C) and γi = r(Ci) – note that we do not assume
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s > 1, i.e. C could be reduced to the leaf γ (corresponding to the case s = 0). As the tree
A is a tautology, it computes True. Let us define some conditions on A. The tree is logically
equivalent to

∨

i Āi ∨ ℓ = B̄ ∨ ∨

i6=i0
(
∧

j Ai,j ∧ ᾱi) ∨ ℓ. By expanding the disjunction, we get
the necessary condition that

B̄ ∨
∨

16i6p, i6=i0

ᾱi ∨ ℓ

must compute to True. Expanding the premise B, we obtain that

∨

16i6s

γ̄i ∨ γ ∨
∨

16i6p, i6=i0

ᾱi ∨ ℓ (1)

must evaluate to True.
Let N ′

1 ⊆ N1 be the set of trees such that γ ∈ {ℓ, ℓ̄}. It is easy to show that µ+
k (N ′

1) =
O(1/k2). We now focus on N ′′

1 := N1 \ N ′
1. We shall compute some formal power series a(z)

such that |{A ∈ N ′′
1 : ‖A‖ = n}| 6 [zn]a(z) for all n ∈ N, in order to get an upper bound on

µ+
k (N ′′

1 ).
First let us fix p, s, ℓ and γ. In the trees of N ′′

1 , the number of possible subtrees C is
bounded by the number of trees counted by the following generating function

cp,s(z) =

(

1

1 − (fk(z) − z)

)p

· z · np,s

where np,s is an integer to be defined precisely later. Now, the number of subtrees B is
bounded by the generating function

bp,s(z) = cp,s(z) · 1

1 − fk(z)
· z,

and the total number of trees A for some fixed p, s, ℓ, γ is bounded by

ap,s(z) = p ·
(

1

1 − (fk(z) − z)

)p−1

· z · bp,s(z).

From Expression (1) we get that (at least) one of the αi or γi is equal to ℓ̄ or γ̄, or (at least)
one couple of literals among {αi | 1 6 i 6 p, i 6= i0} ∪ {γi | 1 6 i 6 s} are equal. Thus we
choose

np,s = 2(2k)p−2+s(p − 1 + s) + 2k(2k)p−3+s

(

p − 1 + s

2

)

.

It remains to define

a(z) = 2k(2k − 2)

∞
∑

s=0

∞
∑

p=1

ap,s(z)

where 2k corresponds to the choice of ℓ and 2k − 2 to the choice of γ. Hence the generating
series of N ′′

1 satisfies φN ′′
1
≺ a. An easy computation on the power series a(z) now shows that

µ+
k (N ′′

1 ) = O(1/k2). This ends the proof of Claim 1. Proof of Claim 2 is very similar and left
to the reader.
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Theorem 11 In the model of trees over implication and both positive and negative literals,
asymptotically (when the number of variables tends to infinity) all tautologies are simple, i.e.

lim
k→∞

µk(Sk)

µk(Tk)
= 1.

Moreover, the density of tautologies amongst all expressions is equal to µk(Tk) = 7/(8k) +
O(1/k2).

Proof: The proof follows directly from Lemmas 9 and 10.

5 Final remarks

We have shown that asymptotically, all tautologies over implication are simple, i.e. either
one of the premises is equal to the goal, or two of their premises are opposite literals. Let us
mention here that a similar result holds for expressions built from implication and positive

literals only. In this restricted context, the set of simple tautologies is simply S(1)
k , the set of

tautologies with one premise equal to the goal. This characterisation furthermore enabled us
to prove that asymptotically, in the fragment of implication, all tautologies are intuitionistic
ones [4].

Acknowledgements. We are grateful to Brigitte Chauvin for fruitful discussions about this
problem.
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