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Abstract

We survey some problems that appear in the analysis of different problems in
Computer Science, and show that they can be cast in a common framework (occu-
pancy urn models) and admit a uniform treatment.

1 Introduction

Although data structures such as trees and graphs are ubiquitous in Computer Science,
and may well be the most frequent models in the analysis of data structures and algo-
rithms, a small but interesting number of problems relative to random allocations can
be cast in a common discrete probabilistic framework, known as urn models. Roughly
speaking, we have a certain number of urns, into which we throw balls (we may be allowed
to remove them), and we are interested in some parameter of the model, such as the total
number of balls, or the fraction of urns satisfying some property. When we have a single
urn and balls of different colors, that we may draw from or add to the urn, we have vari-
ations on the so-called Polya urn model. Such models have proved useful for analyzing
balanced trees by fringe analysis; see for example a paper by Aldous et al. applied to
several tree models [1], or a recent work by Mahmoud on random binary search trees [24].
We concentrate here on so-called “occupancy” urn models, where we have a sequence of
urns and throw balls at random into them; often the parameter under study is the number
of urns satisfying some property.

We do not claim to make a complete survey of all appearances of occupancy urn models
in analysis of algorithms, and we shall mainly concentrate on our former work; our goal
in this paper is to show that all the problems we present (and probably many others)
share a common probabilistic description and can be dealt with in a unified manner,
by using the tools of the analysis of algorithms. We refer the reader to [9, 10] for a
general introduction to these tools, from a generating function description of our random
allocations to asymptotic analysis and limiting probability distributions.

We present in Section 2 a tentative classification of occupancy urn models and recall
results on the basic versions of these models, then show how a general approach by
generating functions might prove useful. Sections 3 to 5 then give some examples drawn
from Computer Science, and show how our general framework applies to them.
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Figure 1: Allocation of balls into urns

2 Occupancy urn models

2.1 The different problems

Many of the problems related to the occupancy of a sequence of urns can be roughly
classified into one of the following three types :

e Static problems : We throw a given number of balls into the sequence of urns, and
look at the final configuration, characterized by the probability distribution of some
random variable (often the number of urns satisfying some property P);

o Waiting time models : We throw the balls one by one, and wait for the first appear-
ance of a specified configuration (a specified number of urns satisfying a property P);

o Dynamic models : We throw the balls one by one, and consider the sequence of
1

configurations.

The occupancy models share a common framework : We have a sequence (sometimes
a set) of urns, into which balls are thrown according to some rules (Fig 1). The models
differ according to the number of balls thrown at each trial, and to the possible evolution
of each urn. The urns and the balls may be distinguishable, or not; the number of balls
that an urn may receive is usually unbounded, but may be finite; when the urns are
distinguishable (we are dealing with a sequence of urns) they may have uniform or non
uniform probabilities to receive a ball, etc.

The basic reference is the book by Johnson and Kotz [20], augmented by the recent
survey of Kotz and Balakrishnan [22] (which, however, deals mostly with variations on
the Polya model). The book by Kolchin et al. [21] presents detailed studies about the
number of empty urns, and also about the number of urns with a given number of balls,
in the classical model.

General references also include Chapter 8, “Words and maps”, of the book [9] by
Flajolet and Sedgewick, which deals with string and urn models. The report [7] is an
introduction to urn models, oriented towards the use of symbolic tools (such as Maple);
it presents many examples and gives a good classification of major models.

'A variation on this appears when we accept the withdrawal of a ball already present.



Some notations : Throughout the paper, we shall use m for the number of urns (which
we assume is finite), and n for the number of balls, when appropriate. When speaking
about asymptotic properties, we shall mostly consider the central domain, i.e. the domain
where the (final) number of balls and the number of urns are large and proportional.

2.2 The classical occupancy model

A model that has been the basis of many studies appears when the urns are distinguishable
and the balls are undistinguishable. Results have been obtained for the number of urns
having a specified number of balls (most notably for the number of empty urns), both in
the static and dynamic cases. The waiting time version, when we consider the number of
urns with at least two (k) balls, is closely related to the classical birthday problem : Urns
represent dates; what is the number of balls that must be thrown to get for the first time
an urn with at least two (k) balls, i.e. a shared anniversary (of order k)?

Hashing tables can be seen as occupancy urn models in a simple way : each address is
associated with an urn, and each key with a ball; the hashing function that maps keys to
addresses is equivalent to throwing a ball at random into one of the urns. The classical
parameters of hashing translate into urn problems; for example the first time that an urn
receives two (k) balls is the time of the first collision (of order k), the number of empty
urns is the number of addresses without keys, the number of keys in an urn is the number
of keys that hash to this address, and the maximum number of keys that hash to a given
address is the maximum occupancy of an urn.

2.3 The number of empty urns and the Coupon Collector’s
problem

Before turning to more complex urn models, we shall return to the number of empty
urns, and show how the use of generating functions may unify the treatment of the
static and waiting-time problems. References are [21] for a detailed study of the number
of empty urns; for the Coupon Collector’s problem, we shall refer to [8], which gives
a presentation using generating functions, and allowing for easy generalization to non
equiprobable coupons.

In the Coupon Collector’s problem, coupons are drawn with replacement from a finite
set, and we are interested in the number of coupons one must draw to get for the first time
at least one (k) occurrence of each coupon, or a set of j distinct (unspecified) coupons.
The related occupancy model is simple : A candidate coupon is an urn, and drawing a
coupon is simply the allocation of a ball to an urn. The waiting time for the first occurence
of a set of j distinct coupons is the number of balls one must throw to get for the first
time 7 non-empty urns.

All the information that allows us to treat the static and waiting time problems is
encoded into the generating function describing the allocations, where the variables  and
y mark respectively the non-empty urns? and the total number of balls : Define p; as the
probability of the i-th urn, or coupon; then the probability generating function is

Fla,y) =] (1 — x4 xe™).
=1

?When we know the total number of urns, studying the number of empty urns, or the number of
non-empty urns, are equivalent problems.



The static model amounts to studying the distribution of the random variable X equal
to the number of occupied urns, for a fixed number of balls n. The probability generat-
ing function of X is [y"]F(x,y)/[y"]F(1,y); in the uniform case (p; = 1/m), it may be
simpler to use the enumerating function (1 — « + :z:ey)m . From whatever function F' we
have decided to use, we can get probabilities, exact and asymptotic formulae for all the
moments, and study the limiting distribution when n and m grow large. For example, in
the uniform case the r.v. X, suitably normalized, converges to a Gaussian distribution in
the central domain; in the left-hand domain (me‘”/m has a finite or null limit) it converges
to a Poisson distribution, and in the right-hand domain (n?/m has a finite limit) the r.v.
X — (m —n) has for limit a Poisson distribution [20, p. 318-320]. It is also possible to get
asymptotic results for non-uniform distributions on the urns; see for example [20, p. 321].

For the Coupon Collector’s problem, the average waiting time to obtain for the first
time a collection of j distinct coupons can be expressed in terms of the probability gen-
erating function F(z,y) :

Z/ (z,y)e vdy,

and the average waiting time for a full collection is f;"™ (1 — F(1,y))e™Ydy. In the uniform
case, we find back the well-known expression f;7* (1 — (1 — e¥/™)™)dy.

Generating functions can also be the basis for the study of the dynamic case; see [21,
Ch. 4] for a systematic treatment.

2.4 A general approach for the static and dynamic cases

We give here the general ideas that underlie asymptotic results, mostly in the central
domain. We shall formulate them for a random variable X, equal to the number of urns
satisfying some property P, but we believe that they may be adapted to other models,
for example to the join models presented in Section 3.2.

The most important assumption is the independence of the urns : The state of an urn
is independent of the state of the other urns, at least as long as the number of balls is not
fixed (when the number of balls is fixed, we are dealing with weakly correlated random
variables). Hence the bivariate function associated to the static case, marking the balls
and the urns satisfying P, is the m-th power of a simpler function, and is often entire.
From it, we can extract an asymptotic expression for the probability generating function
of the r.v. X, most often by a saddle-point approximation, and general theorems ensure
that the limiting distribution in (a suitable equivalent of) the central domain exists and
is Gaussian (see for example results by Drmota [5], Bender and Richmond [2], or the
“quasi-powers” framework of Hwang [19]) .

Following the ideas presented by Kolchin et al. [21] and used for example by Louchard
n [23], we can sketch an analytic method for studying the asymptotic process X,,(n),
when the balls are thrown one at a time :

1. Check that the limiting distribution of X,,(n) at a given time n, i.e. for a given
(large!) number n of balls, is asymptotically Gaussian in some range (usually the
central domain);

2. Suitably normalize the sequence of random variables and the time intervall;
3. Check that finite-dimensional distributions are Gaussian;

4. Obtain candidate covariance for a limiting process X (¢);
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5. Introduce the random variable equal to the number of urns whose state has changed
in some interval; get a bound on some moment, then use a probabilistic result (see
for example [17, p. 514]) to conclude to tightness of the sequence of the (normalized)
random variables X, and to convergence towards a (Gaussian process.

As was the case for point 1, points 3 to 5 can be attacked by a generating function
approach, due to the fact that these functions are large powers of simpler functions.
However, actual computations for a given model often turn out to be quite involved. The
paper [6] gives some general conditions under which the above approach holds, as well as
several examples.

3 Database problems

3.1 Yao’s formula

More than twenty years ago, Yao [26] gave a simple formula for the expected number of
blocks to be retrieved, assuming that one wants to access a given number of items. We
present here a sketch of the modelization by urns and balls, and refer an interested reader
to [14] for detailed results and applications.

Consider a set & of p items, whose representation in memory requires a specified
number m of pages (each page contains b = p/m objects). Assume that we want to access
n items, which are distributed at random among the m pages; how many pages (blocks)
must be read in order to get all the desired items?

The number of blocks to be read is a random variable X with integer values. Some time
before Yao, Cardenas [4] (without mentioning it) gave a formula for the expectation of X
that comes straight from the classical empty urns model, where urns have unbounded
capacity. However, this assumption is unrealistic from a database point of view. Yao
obtained the expectation of X by elementary computations :

(p;b)) |

(%)
By introducing an urn model which is a variation of the empty urns model, where

the size of the urns is finite and equal to b, we were able to do a detailed probabilistic
analysis, and to obtain the limiting distribution on X. The translation from databases to

E[X]=m (1—

urns and balls is as follows : A block of size b is an urn of capacity b; choosing an item
to be retrieved is equivalent to throwing a ball at random into one of the urns; and the
number of blocks that must be read is the number of non-empty urns.

We recall that X is the random variable number of selected blocks, or of non empty
urns. The generating function enumerating the set of possible allocations of balls into
urns is

Flay) = (1+a((1+y) = 1)
From this function, we can derive exact expressions for all moments, involving binomial
coefficients; for example the average value E[X] is equal to [y"|0F/0x(1,y)/[y"|F(1,y);
thus it is simple to obtain asymptotic values in terms of n and m. In the central domain,
the limiting distribution of the random variable X exists and is Gaussian.

The modelization by an urn model makes it comparatively easy to generalize Yao’s formula
to at least some classes of non uniform distributions on urns, which is relevant in some
problems appearing for example in object databases [14].



3.2 Evaluation of sizes of derived relation

When relational databases came into use, it was quickly apparent that they needed ef-
ficient query optimizers, which lead to questions about choosing an execution plan; to
be able to make such a choice, one of the many tools used was evaluation of statistical
parameters of the databases, the so-called “statistical profile” [25]. The sizes of interme-
diate results, i.e. of the sets of objects that are obtained by applying the operators of
whatever query language is used, are among the parameters that appear in a statistical
profile. When using the relational algebra, it has thus become relevant to estimate the
sizes of relations obtained by relational operators, most notably by a projection or a join.

We recall that relations are basically tables with several columns and without dupli-
cates; the projection of a relation is obtained by suppressing some columns and removing
the duplicates; the join of two relations on a common column (attribute) is obtained from
the cartesian product of the two relations, by keeping only those lines that agree on the
shared attribute.

We proposed some years ago a parametric model to this effect, that uses a variation
of the empty urns model for the projection, and that introduces new urn models for joins.
We refer to [15, 16] for an introduction to the models, dealing with the database aspects,
and to [11, 12] for a detailed presentation and for asymptotic results, and sum up the
main points below.

For the projection, we basically have to deal with an empty urns model when the
urns are either infinite, as in the classical case, or bounded, i.e. can receive at most 4
balls; the choice depends on the underlying database dependencies. The parameter under
study, which is the size of the projection, is equal to the number of non-empty urns. Of
course the case of bounded urns is equivalent to Yao’s problem. For the (equi)join, we
have a model with different types of balls (see Fig 2) : We throw balls of two different
colors (red and blue) into urns, which are either infinite or bounded, according to the
underlying data dependencies, then put green balls into each urn that contains both red
and blue balls; the number of green balls in each urn is the product of the number of red
and blue balls in this urn. The semijoin, which is the composition of a projection and
an equijoin, can be similarly modelized (Fig. 3) : After throwing red and blue balls, we
consider again urns that contain balls of the two colors, and we put as many green balls
as the urn contains red balls. In both cases, the size of the (equi or semi) join is equal to
the cumulated number of green balls in all the urns.

For these models, a generating function description has allowed us to prove the ex-
istence of a Gaussian limiting distribution in a suitably defined “central domain”. The
generating function for the projection has the general form

Flz,y) = (1 —z+a)(y)™,

where © marks the projection size and y the initial relation size, and where A(y) is the
generating function describing the allocation of balls into a single urn : For infinite urns,
AMy) = €Y, but urns of size § (and distinguishable places in an urn) give A(y) = (1 +y)°;
other functions are possible. For the equijoin, if the functions describing the allocations
of red and blue balls into an urn are A\, (y) = ¥, axy®™ and Xo(y) = 34 bry®, the function
describing the allocations, with = marking the green balls, y and z the red and blue

balls, is

Z akblxklykzl )
k|l
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Figure 2: Allocation of balls for the equijoin

The function associated with the semijoin is simpler :

(Ar(y) + A(zy)(Aa(z) = 1)™

[t is also possible to obtain dynamic results; in [13] we considered a case that is a general-
ization of the one presented above, in which we allowed for withdrawal of balls (correspond-
ing to deletion of some items on the database). The resulting process is asymptotically
Gaussian, with a covariance that can be explicitely computed.

4 Balanced urns

When studying a problem from Learning Theory, we came to a model that involves balls
of two colors, where the state of an urn is related to its balance, i.e. to the difference
between the numbers of balls of each color. We refer the reader to [3] for a detailed
presentation and give below a brief summary of the problem and of its modelization.

Let us consider the following (very) simple problem : Assume that we want to learn
some boolean function on p boolean variables; the domain of this function has for car-
dinality m = 2P. Associate an urn to each initial configuration of the variables, and a
ball (labelled true or false) for the result of each trial. A sequence of n trials is thus
represented by the allocation of n balls into the urns. Now assume that, for each trial,
there is a (small) probability that we won’t get the correct answer, but a wrong one. We
shall thus have two types of balls, “good” and “bad” ones. If there are not too many
wrong answers for a given configuration, we might still be able to decide, by a majority
argument, what the correct value of the function for this configuration should be. But if,
for some urn, there are too many wrong answers, then the value of the function for the
corresponding configuration of the p boolean variables will be wrong. Thus we see that
an important factor in evaluating the performance of this learning method is the number
of urns for which we shall learn a wrong value, i.e. of urns that have a majority of wrong
answers.
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Figure 3: Allocation of balls for the semijoin

More generally, we shall be interested in the number of urns having an equal number
of good and bad balls, a specified relative excedent (balance) of good balls, or a positive
balance (see Fig. 4). For example, when good and bad balls have the same probability, the
generating function marking the urns of balance ¢ by x and the total number of balls by
y can be expressed using the Bessel coefficients I,(t) = 3, (¢/2)7% [rl(q + r)! (if desired,
we might as well mark separately the balls of each type; we also assume that the urns can
receive an unbounded number of balls; extensions to bounded urns are possible) :

Fa,y) = (e’ + (x — 1) 1,(y))™.

If good and bad balls have different probabilities i and 1 — p, the probability generating

Flz,y) = (ey +(z— 1)@@(2my))m .

Again, we have a limiting Gaussian distribution in the central domain, of known expec-

function is

tation and variance; when throwing the balls one at a time, the asymptotic process is
Gaussian.

5 Conclusion

We have tried to present in a unified manner some problems involving occupancy urn
models. We do not claim that our approach covers all interesting appearances of these
models. For example, in static models we always assume that the number of balls is
known; another approach might consider that this number is a random variable, following
a given distribution (often Poisson) [18].
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Figure 4: Allocation of balls of two types and corresponding urn types
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