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Abstract

The paper deals with the problem of routing a set of communication requests repre-
senting a permutation of the nodes of an all-optical tree shaped network employing the
wavelength division multiplezing (or WDM) technology. In such networks, information
between nodes is transmitted as light on fiber-optic lines without being converted to
electronic form in between, and different messages may use the same link concurrently if
and only if they are assigned distinct wavelengths. Thus, the goal of the routing problem
on these networks is to assign a wavelength to each communication request in order to
minimize the number of wavelengths needed to perform all communications in only one
round. Such a routing problem can be modeled as a permutation-path coloring problem
on trees. An instance of the permutation-path coloring problem on trees is given by
a directed symmetric tree graph 7' on n nodes and a permutation ¢ of the vertex set
of T'. Moreover, we associate with each pair (i,0(7)), ¢ # (i), 1 < i < n, the unique
directed path on T from vertex i to vertex o (7). Thus, the permutation-path coloring
problem for this instance consists in assigning the minimum number of colors to such
a permutation-set of paths in such a way that any two paths sharing a same arc of the
tree are assigned different colors. In fact, the colors in the latest problem represents the
wavelengths in the former one. In this paper we first show that the permutation-path
coloring problem is NP-hard even in the case of involutions (resp. circular permuta-
tions), that are permutations which contain only cycles of length at most two (resp.
contain exactly one cycle), on both binary trees and on trees having only two vertices
with degree greater than two. Next, we calculate a lower bound on the average com-
plexity of the permutation-path coloring problem on arbitrary networks. Then we give
combinatorial and asymptotic results for the permutation-path coloring problem on lin-
ear networks in order to show that the average number of colors needed to color any
permutation on a linear network on n vertices is n/4 + o(n). We extend these results
and obtain an upper bound on the average complexity of the permutation-path coloring
problem on arbitrary trees, obtaining exact results in the case of generalized star trees.
Finally we explain how to extend these results for the involutions-path coloring problem
on arbitrary trees.
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1 Introduction

Efficient communication is a prerequisite to exploit the performance of large parallel sys-
tems. The routing problem on communication networks consists in the efficient allocation
of resources to connection requests. In this network, establishing a connection between two
nodes requires selecting a path connecting the two nodes and allocating sufficient resources
on all links along the paths associated to the collection of requests. In the case of all-optical
networks, data is transmitted on lightwaves through optical fiber, and several signals can
be transmitted through a fiber link simultaneously provided that different wavelengths are
used in order to prevent interference (wavelength-division multiplexing) [5]. As the number
of wavelengths is a limited resource, then it is desirable to establish a given set of connection
requests with a minimum number of wavelengths.

In this context, it is natural to think in wavelengths as colors. Thus the routing problem
for all-optical networks can be viewed as a path coloring problem: it consists in finding
a desirable collection of paths on the network associated with the collection of connection
requests in order to minimize the number of colors needed to color these paths in such a
way that any two different paths sharing a same link of the network are assigned different
colors. For simple networks, such as trees, the routing problem is simpler, as there is always
a unique path for each communication request.

This paper is concerned with the routing permutations on trees by arc-disjoint paths, that
is, the path coloring problem on trees when the collection of connection requests represents
a permutation of the nodes of the tree network.

Previous and related work. Using a result of Leighton and Rao [19], Aumann and Rabani [1]

have shown that O(logzn) colors suffices for routing any permutation on any bounded degree
network on n nodes, where 3 is the arc expansion of the network. The result of Aumman
and Rabani almost matches the existential lower bound of Q(ﬁl—Q) obtained by Raghavan and
Upfal [24]. In the case of specific network topologies, Gu and Tamaki [16] proved that 2
colors are sufficient to route any permutation on any symmetric directed hypercube. Inde-
pendently, Paterson et al. [23] and Wilfong and Winkler [28] have shown that the routing
permutation problem on ring networks is NP-hard. Moreover, in [28] a 2-approximation
algorithm is given for this problem on ring networks. Independently, Kumar et al. [18] and
Erlebach and Jansen [7] have shown that computing a minimal coloring of any collection
of paths on binary trees is NP-hard. Caragiannis et al. [4] consider the symmetric-path
coloring problem on trees (i.e., for each path from vertex u to vertex v, there also exists
its symmetric, a path from vertex v to vertex u) showing that this special instance is also



NP-hard for unbounded degree trees, and leaving as an open problem the complexity of such
a symmetric instances on binary trees. To our knowledge, the routing permutation problem
on tree networks by arc-disjoint paths has not been studied in the literature.

Our results. In Section 3 we show that the symmetric-path coloring problem on binary trees
is NP-hard, answering to the open question asked in [4]. Moreover, we extend such a result
in order to show that the permutation-path coloring problem remains NP-hard even in the
case of involutions (resp. circular-permutations), that are permutations which contain only
cycles of length at most two (resp. contain exactly one cycle), on both binary trees and
on trees having only two vertices with degree greater than two. In Section 4 we compute
a lower bound for the average number of colors needed to color any permutation-path set
on arbitrary networks. In Section 5 we focus on linear networks. In this particular case,
since the problem reduces to coloring an interval graph, the routing of any permutation is
easily done in polynomial time [17]. We show that the average number of colors needed to
color any permutation-path set on a linear network on n vertices is n/4 4+ o(n). In Section
6, we extend the results obtained in Section 5, by giving an upper bound on the average
number of colors needed to color any permutation-path set on arbitrary trees, obtaining
exact results in the case of generalized star tree networks. As far as we know, this is the
first result on the average-case complexity for routing permutations on all-optical networks.
We finally show how to extend these results to the involution problem partly studied in [?].
We begin in Section 2 with the preliminaries.

2 Definitions and preliminary results

We model the tree network as a rooted labeled symmetric directed tree T' = (V, A) on n
vertices, where processors and switches are vertices and links are modeled by two arcs in
opposite directions. Let P be a collection of directed paths on T. We assume that the
vertices of T are arbitrarily labeled by different integers in {1,2,...,n}. We denote by
¢ ~» j the unique directed path from vertex ¢ to vertex 7 in T. The arc from vertex 7 to its
father (resp. from the father of ¢ to 7), 1 < i < n — 1, is labeled by it (resp. i7). We call
T(7) the subtree of T' rooted at vertex 7, 1 < ¢ < n.The vertex labeled with the integer n is
the root vertex of T'. See Figure 1(a) for the linear network on n = 6 vertices rooted at ver-
tex i = 6. Note that we will just draw an edge i rather than the arcs ¢t and ¢~ in the sequel.

Forany i, 1 < ¢ < n—1, the load of an arc it (resp. i7) of T, denoted by Ly (P, i) (resp.
Ly (P,i7), is the number of paths in P using such an arc, and the mazimum load among all
arcs of 1" is denoted by L7 (P). We call the coloration number and we denote by R (P), the
minimum number of colors needed to color the paths in P such that any two paths sharing
a same arc in 1" are assigned different colors. Trivially, we have that Rp(P) > Lz (P).
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Figure 1: (a) Labeling of the vertices and the arcs for the linear network on n = 6 vertices
rooted at vertex i = 6. (b) Representation of the permutation o = (3,1,6,5,2,4) on the
linear network given in (a).

Let S, denotes the symmetric group of all permutations on [n] = {1,2,...,n}. Let o be
a permutation in &, then o is called involution (resp. circular) if it contains only cycles
of length at most two (resp. contains exactly one cycle of length n). Let Iy, be the set
of involutions with no fixed point on [2n]. We say that P is a permutation-path set on T
if P represents a permutation o € S, of the vertex-set of 7', where ¢(¢) = j if and only
if i ~ j € P. In the sequel we talk indifferently of a permutation-path set P or of the
permutation ¢ € §,, that P represents. Thus, given a permutation ¢ € §,, and a tree
T on n vertices, the load of the arc it (resp. i7), 1 < ¢ < n — 1, can be expressed by

Ly(o,i*) =[{j € T(i) : o(j) ¢ T(i)}| (resp. Lr(o,i7) = [{j ¢ T(i) : o(j) € T(i)}]).
Lemma 1 Let T be a tree on n vertices. For all o € S,, and for all i € {1,2,...,n— 1},
Ly(o,it) = Ly(o,i7). Therefore, Lp(o) = max Lr(o,it).
Proof. We can prove this by induction. If vertex ¢ is a leaf, we have two cases:
e o(i) =1, then Ly(o,i%) = Ly(o,i7) =0,
o(i) # i, then Ly(o,i%) = Ly(o,i7) = 1.

Otherwise, vertex ¢ is an internal node. The result still holds for ¢ > 1. Let {iy,i3,...,¢;}
be the sons of the vertex 7, and N(i;) be the number of vertices & € 7'(i;) such that
o(k) € T(i;) and o(k) € T(i). Then it is easy to see that Ly(c,iT) and Ly(o,i7) satisfy
the same recurrence relation for ¢ > 1 :

Ei:l Ly(o, zf) — N (ix) if o(i) =i oro(i)e (2) and o~ 1(3) & T(3)
Ly(o, i) = 4 or o(i) ¢ T'(i) and o~ 1(4) € T'(2)
' 1+ Ei:.l Ly (o, 1?) — N(ip) if o(i) €T () and o71(2) € T(4)
14+ 30, Ly(o,iE) — N(iy) if o(i) € T(i) and o~ (i) € T(3)
(1)
(]



This lemma tells us that in order to study the load of a permutation on a tree on
n vertices, it suffices to consider only the load of the labeled arcs iT. For example the
permutation o = (3,1,6,5,2,4) on the linear network in Figure 1(b) has load 2. The
maximum is reached in the arcs 4%,

Definition 1 Let T be a tree on n vertices. The average load of all permutations o € S,

-7 o
on T, denoted by L, is defined as LT = = Z; Ly(o).
oESy

Proposition 1 [8] There is a polynomial algorithm to color any collection P of paths on

any tree T such that LT(P) < Rp(P) < [3Lr(P)].

Given a tree 7' on n vertices, we denote by Rt the average number of colors needed to color
all permutations in S, on T. Thus, by Proposition 1, we have the following lemma.

Lemma 2 Let T be a tree on n vertices. Then Lt < Ry < %ET + 1.

Proposition 2 [4] There is a polynomial algorithm to color any collection P of symmetric
paths on any tree T such that Ly(P) < Rp(P) < L%LT(P)J.

Given a tree T on 2n vertices, we denote by Ry the average number of colors needed to
color all involutions in I, on T. Thus, by Proposition 2, we have the following lemma.

Lemma 3 Let T be a tree on 2n vertices and let Lt be the average load of all involutions
in Iy, onT. Then Ly < Ry < %LT.

Definition 2 Let T be a tree and let P be a collection of paths on T. We call conflict graph,
and we denote by Gr(P) = (V, E), the undirected graph associated with T and P, where
each vertex v, € V represents a path p € P, and two vertices v, and v, are joined by an
edge in F if and only if its associated paths p and q respectively, share a same arc dans T.

It is straightforward to see that the coloration number Rr(P) is equal to the chromatic
number of the conflict graph G'r(P).

Definition 3 Let T be a tree and let P be a collection of paths onI'. The digraph associated
with P, denoted éT(P), is the digraph with vertex set V', where v € V' if and only if v is a
vertex of T and there is at least one path in P having v as ending-vertex, and with arc set
A'=A{(v,w) : vyw eV and v~ w € P}.

A digraph G = (V, A) is said pseudo-symmetric, if for any vertex v € V, dt(v) = d~(v),
where dT (v) (resp. d™ (v)) denotes the in-degree (resp. out-degree) of vertex v.



Theorem 1 [11] If G is a connected pseudo-symmetric digraph, then G is Eulerian and an
Fulerian circuit of G can be found in linear time.

Let P, denotes the directed symmetric path graph on n vertices. Let ST(n) denotes the
directed symmetric star graph on n vertices (i.e., the tree having only one internal vertex
connected to n — 1 leaves). Let GST(X) denotes the generalized star graph on n vertices,
where A = (Aq,..., Ag) is a partition of the integer n — 1 into k parts (k > 2). In fact, the
graph GST(A) has k£ branches connected to each other by one vertex, where \; denotes the
length of the i*® branch (i.e., a branch of length ); is a path graph on A; 4+ 1 vertices).

3 Complexity of computing the coloration number

We begin this section by showing the NP-hardness of the symmetric-path coloring problem
on binary trees, answering to an open question asked in [4]. Moreover, we extend such a
result by showing that the permutation-path coloring problem remains NP-hard even in the
case of involutions (resp. circular-permutations), that are permutations which contain only
cycles of length at most two (resp. contain exactly one cycle), on both binary trees and
on trees having only two vertices with degree greater than two. Finally, we discuss some
polynomial cases of this problem.

3.1 NP-hardness results

This section shows that the path coloring problem on trees is difficult even for very restrictive
cases. For this, we use a similar reduction with the one used in [7, 18] for proving the NP-
hardness of the general path coloring problem on binary trees. We remark that the reduction
used in [7, 18] can not be directly extended to obtain NP-hardness results on the restrictive
instances of the problem that we consider in the following theorem.

Theorem 2 Let T be a directed symmetric tree and let P be a collection of directed paths

onT. Then, computing Ry (P) is NP-hard in the following cases:

(a) T is a binary tree and P is a collection of symmetric paths on T .

(b) T is a binary tree and P represents an involution of the vertices of T

(¢) T is a binary tree and P represents a circular-permutation of the vertices of T

(d) T is a tree having only two vertices with degree greater than two and P represents an
involution or a circular-permutation of the vertices of T.

Proof. We use a reduction from the ARC-COLORING problem [25]. The ARC-COLORING
problem can be defined as follows : given a positive integer k, an undirected cycle C',, with
vertex set numbered clockwise as 1,2,...,n, and any collection of paths F on C,,, where
each path in F' from vertex v to vertex w, denoted by < v,w >, is regarded as the path
beginning at vertex v and ending at vertex w again in the clockwise direction, does F' can



be colored with % colors such that no two paths sharing an edge of C), are assigned the same
color 7 Tt is well known that the ARC-COLORING problem is NP-complete [13]. W.l.o.g.,
we assume that each edge of C), is traversed by exactly k paths in F. If some edge [i,7+ 1]
of C), is traversed by r < k paths, then we can add k — r paths of the form < i,i4+1 > (or
< i,1 > if i = n) to F without changing its k-colorability. We assume that no path in F
covers entirely the cycle C',. Let I be an instance of the ARC-COLORING problem defined
as above. We construct from I an instance I’ consisting of a symmetric directed tree T and
a collection of paths P on T such I’ verifies the constraints giving in (a) (resp. (b), (¢),
(d)), and such that F is k-colorable if and only if P is k’-colorable, for some integer &' > k.
Let < 4,7 > be any path in F, thus we say that < ¢,j > is of type I (resp. type 2) if i < j
(resp. ¢ > j).

(a) T is constructed as follows : first, construct a graph on n vertices isomorphic to path
graph P, and denote its vertices by vy, vs,...,v,. Next, construct 2(n + k) different iso-
morphic graphs to star graph ST(4). Take n + & of such 2(n + k) isomorphic graphs and
denote theirs leaves by [;, s; and t;, and denote the leaves of the n + k other ones by r;, z;
and z;, 1 <7 < n+ k. Finally, connect the vertex [; (resp. r;) to vertex l;;1 (resp. ri41),
1<i¢<n+k-—1, and connect the vertex [y (resp. r1) to vertex vy (resp. v,) of P,.

P is constructed as follows : for each path < i,j7 >€ F,if < 4,5 > is of type 1 (i.e. i < j),
then add to P the paths A;; = v; ~ v; and B;; = v; ~ v;. Otherwise, if < 7,7 > is of
type 2 (i.e. © > j), then let p (resp. ¢) be an integer in {1,2,...,k} such that no path in P
uses the vertices z, and z, (resp. s, and t,) as ending vertices. So, add to P the path sets
A ={vi~ 2p, xp ~ 1y, 5~ v} and Bj; = {v; ~ 55, g ~ 2p, 2p ~ v}

In order to make sure that the digraph associated to the collection of paths (see Def. 3) be
connected (property that will be used to prove Part (c)), for each j, k+1 < j < n +k,
we add to P the sets of paths Ci_r = {s; ~> vj_p, vj_p ~> zjr, j1 ~ Vji_g,vji_ ~ t;} and
Dy = {’U]‘_k Mo Sy 2 e UGk, Vi~ Xty s U]‘/_k}7 where j' = j+1if j < n+k,
otherwise j' = k + 1.

In addition, for each ¢, 1 < i < n+k, we add to P 2(n + k) — 1 identical paths s; ~ t;
(resp. a; ~» z) and 2(n 4+ k) — 1 identical paths t; ~» s; (resp. z ~ z;). Finally,
set ¥ = 2(n+ k). In Figure 2 we present an example of this polynomial construction.
By construction is easy to see that P is a collection of symmetric paths on T. More-
over, let < 41,71 >,< i3,J2 >,...,< i, Jr > be the k paths of type 2 in F, and let
Ai e = Avi, = Zp, 5 By, o g 5 S v b and By o ={uj, = s, by, v Bp, 5 2, v 0}
be the two sets of paths in P associated with the path < 7,,j,. >, 1 <r < k. Then P verifies
the following properties:

P1. All the paths in each one of the sets Aimjrv B]-M-T, Cpyand Dy, 1 <r <k, 1 <m <n,
are colored with the same color in any k’-coloring of P. This is done by the k' — 1 identical
paths s; ~ t; (resp. t; ~» s;) and the k&’ — 1 identical paths z; ~ z (resp. z; ~ ),
1 < ¢ < n+k, which make sure that all the paths in each one of these sets are colored with



Figure 2: Partial construction of I’ from I, where n = 4 and k = 2.



the same color in any k’-coloring of P.

P2. Each one of the sets /L'M'T, Bjmr, Cpyand Dy, 1 <r <k, 1 <m < n, should be
assigned a different color in any k’-coloring of P. In fact, it is easy to see that by con-
struction, each path z, ~ t, € A; j (resp. t, ~ x, € Bj ), 1 < r < k, intersects
with all the paths in U% _ {z,, ~ t,. € A; i :m #r} (resp. in U _ {t, ~ z,, €
B;, i 2 m #r}), and with all the paths in UX _ {2, ~ v, v ~ s, € Bj ., } (resp.
in UE _ {vi, ~ 2p,, s Sqn ~ U5, € Ai, . }). Moreover, each set of paths C,, (resp. D,,)
intersects with all the paths in P\ Cp,, \ @ (resp. in P\ D,, \ Q), where @ is the collection
of all the k" — 1 identical paths s; ~ t; (resp. t; ~ s;) and the &' — 1 identical paths z; ~ 2;
(resp. z; ~» 2;), 1 <14 < k. Therefore, by Property P1, this property follows.

P3. Each path A, (resp. By,) in P associated with a path < a,b> in F of type 1, inter-
sects with all the paths in UF_,{t, ~ 2, € Bj ;. } (resp. in UF_ {z,, ~ 1, € A; ; 1), and
by Property P2, with at least one of the pathsin each one of the sets C,, and D,,, 1 < m < n.

Now we claim that there is a k-coloring of F if and only if there is a k’-coloring of P.

Assume that there is a k-coloring of F, and let < ¢,5 > be any path in F' colored with the
color v, 1 <~ < k. Thus a k’-coloring of P can be carried out as follows: if < ¢,j > is of
type 1, then we color the paths A; ; = v; ~» v; and B;; = v; ~» v; in P with colors v and
v + k respectively. Otherwise, if < 7,7 > is of type 2, then we color all its three associated
paths in A;; (resp. in B;;) with color v (resp. v+ k). Next, for each i, 1 < i < n, we
assign to all the paths in the set C; (resp. D;) the color 2k 4 i (resp. 2k + n + 7). Finally,
for each ¢, 1 <1 < n+k, we color the ¥’ — 1 identical paths s; ~ t; (resp. z; ~ z;) and the
k" — 1 identical paths t; ~» s; (resp. z ~» ;) with the k£’ — 1 available colors for each one of
these (k' — 1)-set of paths. Thus, by Properties P1, P2, and P3, it is easy to see that such
a coloring is a proper k’-coloring of P.
Conversely, assume that there is a k’-coloring of P. By Properties P1, P2, and P3, it is easy
to deduce two proper k-colorings for I’ as follows: if < 4,5 > is a path in F of type 1, we
assign to < 7,7 > the color assigned to path A;; = v; ~ v; (resp. Bj; = vj ~ v;) in P.
Otherwise, if < ¢,7 > is a path in F of type 2, we assign to < 2,7 > the same color assigned
to the three paths in the set A;; (resp. Bj;). Thus, F is k-colorable if and only if P is
k'-colorable which ends the proof of (a).

(b) It follows from (a). In fact, let 7" be the binary tree and P be the symmetric collection of
paths constructed in Part (a). Let v and v be two adjacent vertices in 7', and let ¢(u, v) (resp.
o(u,v)) be the set of paths traversing the arc (u,v) (resp. (v,u)) and having as final-vertex

(resp. initial-vertex) the vertex v. As P is symmetric, it is clear that |i(u,v)| = |o(u,v)|.
Then, replace the pair of arcs (u,v) and (v, u) by a path graph on |i(u,v)| = « vertices. Let
P, denote such a path graph, and wy, ws, ..., w, denote its vertices. Replace each pair of

symmetric paths ¢ ~ v € i(u,v) and v ~ a € o(u,v) by the paths @ ~» w; and w; ~ a,
where w; is a vertex of F, not yet used by any path as initial or final vertex. Using the



previous transformation on each pair of adjacent vertices of T', we obtain an instance giving
by an extended binary tree 7’ and a set of paths P which represents an involution of the
vertices of 17, which is equivalent (from the coloring point of view) to the one obtained in
Part (a), ending the proof of (b).

(¢) Let T be the binary tree and P be the symmetric collection of paths constructed in
Part (a). Clearly, the digraph G (P) associated with P (see Def. 3) is a connected pseudo-
symmetric digraph. By using a similar procedure as in Part (b), we can transform 7" and P
in such a way that each vertex v; in T' (recall that vertex v; belongs to the initial path graph
P, constructed in Part (a)), 1 < i < n, be the initial and final vertex of exactly two paths
in P. However, we should be careful in order to maintain the connectness of the digraph
associated with P. For this, for each vertex v;, 1 < ¢ < n, if u is an adjacent vertex to
vertex v;, and the pairs of arcs (u,v;) and (v;, u) should be replaced by a new path graph on
« vertices denoted by wy, wy, ..., w, (see Part (b)), where wy (resp. w,) will be the new
adjacent vertex to v; (resp. u), then after this replacement we should add to P the paths
w; ~» w;41 and w4 ~» w; , 1 < 7 < a, and the paths w; ~ v; and v; ~ w;. 1t is not
difficult to see that this new instance is equivalent (from the coloring point of view) to the
previous one. Let 77 and P’ denote the current tree and the current symmetric collection of
paths respectively, after the previous transformation. Then, the digraph é]"I(P/) is a con-
nected pseudo-symmetric digraph, and by Theorem 1, @T/(P') is Eulerian and an Eulerian
circuit of it can be found in polynomial-time. Let aq,aq,...,a,, a; be an Eulerian circuit of
éT/(P’), where p = |P’|. Note that each pair (a;, a;4+1) in the Eulerian circuit represents a
path a; ~ a;yq1 of P’. Moreover, let wy, ws, ..., w, denote the vertices of the current path
graph in 77, where w; is adjacent to vertex [y, and vertex w, is adjacent to vertex r;. By
previous construction, each vertex w; must be twice on the Eulerian circuit. Thus, following
the Eulerian circuit in the order aj, aq, ..., a,, a1, for each vertex w;, 1 < i < n', if w; is
found for the second time on the Eulerian circuit, we add a new vertex u; to T’ and connect
it to vertex w;, and we replace the paths 8 ~» w; and w; ~» v in P’, by the paths 3 ~ u; and
u; ~ v, where 8 and 7 are the immediately predecessor and successor of w; respectively,
on the Eulerian circuit. Indeed, by construction, each one of the vertices s;, t;, z;, and z;,
1 <1< n+k,is found exactly &' times on the Eulerian circuit, and giving that each one of
these vertices is a leaf of T”, we can replace each one of these vertices by a new path on &’ ver-
tices and arrange the &’ paths in P’ ending and beginning in each one of these in agreement
with the Eulerian circuit. Therefore, it is easy to prove that the obtained tree T is binary
and that the set of paths P’ represents a circular-permutation of the vertices of T7’. Thus,
taking care of the initial paths A;; and B;; (resp. set of paths A;; and B;;) associated
with paths < 4,j > in F of type 1 (resp. 2), we obtain that the final circular-permutation
set of paths P’ on T" is k’-colorable if and only if F'is k-colorable, which ends the proof of (c).
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(d) The involution case follows from (a) and (b). In fact, let 7" be the binary tree and P be
the symmetric collection of paths constructed in Part (a). Replace all the n 4 k isomorphic
star graphs whose leaves are labeled by [;, s;, and t; (resp. r;, @;, and z;) by only one star
ST(2(n + k) + 1) having as leaves the vertices s; and ¢; (resp. x; and z), 1 < i < n+k,
and denote by [y (resp. rq) its only vertex of degree 2(n + k). Next, connect the vertex [y
(resp. 1) to vertex vy (resp. v,) of P,, leaving P as in (a). Thus, it is easy to see that this
new instance is equivalent to the one obtained in Part (a) (from the coloring point of view).
Finally, using similar arguments as in Part (b), we proof the NP-hardness for the involution
case. The circular-permutation case follows by similar arguments from Part (c). This ends
the proof of (d) and the theorem is proved. O

By Proposition 1 (resp. Proposition 2), the best known approximation algorithm for
coloring any collection of paths (resp. symmetrique paths) with load L on any tree network
uses at most [5L] (resp. [2L]) colors. Therefore it trivially also holds for any permutation-
set (resp. involution-set) of paths with load L on any tree.

3.2 Some polynomial cases

Let P be any collection of paths on a tree network T'. If T is a linear network then, the
minimum number of colors R7(P) needed to color the paths in P is equal to the load Lz(P)
induced by P. In fact, if T is a linear network then, the conflict graph of the paths in P
is an interval graph (see [15]). Moreover, optimal vertex coloring for interval graphs can
be computed efficiently [17]. When T is a star network, the equality between Ry(P) and
L7 (P) also holds because the path coloring problem on these graphs is equivalent to find a
minimum edge-coloring of an undirected bipartite graph. Moreover, the minimum number
of colors needed to color the edges of a bipartite graph is equal to its maximum degree, and
such an edge-coloring in these graphs can be found in polynomial time [3]. Combining these
approaches for linear and star networks, Gargano et al. [14] show that if T is a generalized
star network then, an optimal coloring of P on these networks can be computed efficiently
in polynomial time, and that the equality between R (P) and L7 (P) also holds. Note that
all the results in these three networks trivially hold when P is a permutation-set of paths.
However, by Theorem 2, it suffice that the tree network T has two vertices with degree
greater that two and the permutation-path coloring problem on these networks becomes
NP-hard. Moreover, in binary tree networks having only two vertices with degree equal to
3, the equality between the load and the minimum number of colors for a permutation-path
set does not always hold as we can see in Figure 3.

Figure 3(a) shows an example of a permutation o € Sy to be routed on a tree 7" on 10

vertices, which load Lz(o) is equal to 2. Figure 3(b) shows the conflict graph G = G7(0).
Thus, clearly Ry (o) is equal to the chromatic number of G. Therefore, as the conflict graph

11
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Figure 3: (a) A tree 7" on 10 vertices and a permutation ¢ = (5,4,8,2,6,3,9,10,7,1) to be
routed on 7T'. (b) The conflict graph G associated with permutation o in (a).

G has the cycle C5 as induced subgraph, then the chromatic number of G is equal to 3, and
thus Ry (o) = 3.

4 A lower bound for the average coloration number

We derive a lower bound for the average coloration number of permutations to be routed
on arbitrary networks, by giving a lower bound for the average load of permutations to be
routed on these ones. Let G = (V, A) be a directed symmetric graph on n vertices (i.e.
V| = n) and r a routing function in G which assigns a set of paths on G to route any
permutation o € S,,. Let IGJ, be the average load of all permutations in &, induced by the
routing function r, and let U C V be a subset of the vertex set of G. We denote by ¢(U)
the cut (U, U), i.e., the set of arcs {(u,v) € A: v € U, v e V\U}.

Proposition 3 For any graph G' = (V, A) on n vertices, and any routing function r in G,

T g (10000

Proof. Let U C V be any subset of vertices in G and consider a permutation ¢ € §,, to be
routed on GG by using the routing function r. The load of all the arcs in ¢(U) induced by o
with the routing function r is defined by L, (U,0) = |{j € U : o(j) € U}|. The global load of

c(U) is then defined by L, (U) = > L,(U, o). Thus, for any vertex j € U and for any vertex
cES)
k € VAU, each permutation o € S, such that o(j) = k contributes one unit to the global load
of ¢(U). So, the average load of ¢(U) verifies L,(U) > L > > |{o € 8, : o(j) = k}|.
" jeU keV\U
Moreover, for all pair of vertices j and k in G, there exists (n — 1)! permutations o € S,
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such that o(j) = k. Therefore, L,(U) > 5 > > (n—-1)!=1 1 = =D

J€U keV\U jeUke_V\U
Thus, for any arc a € ¢(U), the average load of a verifies L,(a) > ﬁr(%? So, Lg, >
1. |U|~(n—|U|))
b max (MG, 0

[U1-(v1=1U1)

Let us denote by C(G) the parameter max( E@]

Ucv
C(G) is equal to ﬁ, where S§(G) denotes the sparsest cut of graph G. In fact, S(G)

). It is not difficult to see that

. . le(U)] . .
is defined by [r]ngn‘} (7|U|.(|V|_|U|)). In [21] is shown that computing the sparsest cut of a

graph is NP-hard, which implies that computing the parameter C(G) is also NP-hard and
s0, computing the lower bound given in Proposition 3 is NP-hard. Therefore, the method
induced by the proof of this proposition can be used to give some lower bounds (but not
necessarly the best one). However, for any constant ¢ and given a graph G = (V, A), if
the graph bisection of G, denoted Bis(G), is at most equal to ¢, then to know whether
C(G) < k can be computed efficiently : it is sufficient to know if the bound can be better
V(G V(G
than w by considering all the subsets of A(G) disconnecting G with maximal
cardinality ¢, i.e., a polynomial number of such subsets. For example, for any 2d-mesh
M (2n, ¢) with 2n lines and a constant number ¢ of columns, C(M (2n,c)) = ¢- n?. For any
ring C,, C(Cy) = M We end this section by giving a lower bound on the average
number of colors needed to color any permutation ¢ € S, on any tree on n vertices as follows.

Let T be a tree on n vertices. By Proposition 3, we can deduce that the average load
) 3 Tl G
of any arc i+ of T, 1 < i < n — 1, denoted by Lr(i), verifies Lr(i) = T@I(n | (1)|)
n

Moreover, for any vertex ¢ of T', let vy (i) = |T'(2)|/n and o7 (i) = min(vr (i), 1 — vp(7)).
Let o7 = max; ﬁT(i); Then, it is clear that max;{L7(i)} = nor(1l — or). Indeed, it is
straightforward that Ly > max;{L7(7)}. Therefore, we obtain a lower bound for the average
load L.

Lemma 4 Ly > nop(1 — 9r).

Moreover, as R > Ly, we obtain the following lower bound on the average number of colors
needed to color any permutation o € §,, on any tree 1" on n vertices.

Lemma 5 Ry > nop(1 — or).

5 Average coloration number on linear networks

The main result of this section is the following:

13



Theorem 3 The average coloration number of the permutations in S, to be routed on a
linear network on n vertices is

noA 1/3 1/6
1 + 27@ +O0(n''®)
where A = 0.99615. ...

To prove this result, we use enumerative and asymptotic combinatorial techniques. Our
approach first uses the same methodology applied to permutations as Lagarias and al [?]
for involutions with no fixed point. At first we recall in Subsection 5.1 a bijection between
permutations in &, and special walks in N x N, called “Motzkin walks”, which are labeled
in a certain way [2]. The bijection is such that the height of the walk is equal to the load
of the permutation. We get in Subsection 5.3 the generating function of permutations with
coloration number k, for any given k. This gives rise to an algorithm to compute exactly the
average coloration number of the permutations for any fixed n. Then we are able to combine
these enumerative results with random walks techniques developped by Louchard [20] and
Daniels and Skyrme [6] to prove Theorem 3. Note that this “random walk” approach was
not developed in [?] and we therefore extend our results for permutations to involutions
with no fixed point in Section 7.

5.1 A bijection between permutations and Motzkin walks

A Motzkin walk w of length n is a n-uple (wq,ws,...,w,) of unitary steps (North-East,
South-East or East). Let (; be the height of each step that is the difference between the
number of North-East and South-East steps. Then the walk must satisfy the following
conditions:

°
e h; >0,1<i<m
e h, =0;

The height of a Motzkin walk w is H (w) = Z'e{(r)nl:amx " hi}.

Given two infinite sequences {A, },>1 and {b,},>0, a labeled Motzkin walk of length
n has the shape of a Motzkin walk and the South-East steps going from (¢, y;) to (i+1,y,—1)
can be labeled from 1 to A,, and the East steps going from (¢, y;) to (¢4 1, y;) can be labeled
from 1 to b,,. Moreover, given two sequences {\, },>1 and {b,},>0, let M,, be the number
of labeled Motzkin walks and M(2) = 32, 5o M,2" the associated generating function.
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Proposition 4 [9, 10, 26] The generating function M(z) is a continued fraction. Its ex-
pression s

M(z) =

A122

A222
1 —-blz-— 2

1 —-bQZ-—

1 —-boZ——

Labeled Motzkin walks are in relation with several well-studied combinatorial objects
[9, 26, 27] and in particular with permutations. The walks we will deal with are labeled as
follows:

e cach South-East step (i,y;) — (i+ 1,y; — 1) is labeled by an integer between 1 and
y;? (or, equivalently, by a pair of integers, each one between 1 and y;);

e cach East step (4,y;) — (i 4 1,y;) is labeled by an integer between 1 and 2y; + 1.

In Figure 4 we present an example of the labeled Motzkin walks we consider.

Let P, be the set of such labeled Motzkin walks of length n. We recall that &, is the set
of permutations on [n]. The following result was first established by Francon and Viennot
[12]:

Theorem (Francon-Viennot) There is a one-to-one correspondence between the elements of
P, and the elements of S,,.

Several bijective proofs of this theorem are known. Biane’s bijection [2] is particular, in the
sense that it preserves the height: to any labeled Motzkin walk of length n and height &
corresponds a permutation in §,, with load & (and so with coloration number k). We present
in the following another version of the Biane’s bijection in order to understand the relation-
ship between the height of the labeled Motzkin walks and the load of the permutations.

The bijection We will explain the bijection ¢ from the labeled Motzkin walks of length n
to the permutations in S, on the linear network on n vertices. The reverse is easy and left
to the reader. Consider a linear network P, on n vertices such that these ones are labeled
from left to right from 1 to n. Thus, Biane’s correspondence between a labeled Motzkin
walk w = (wy,ws,...,w,) and a permutation ¢(w) = ¢ = (o(1),0(2),...,0(n)) on P, is
such that, for 1 < < n:

e w; is an East step of height j and is labeled 2j 4 1 if and only if o (i) = 1.

15



Figure 4: Example of a labeled Motzkin walk of length 11 and height 3.
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Figure 5: From the shape of the path to the shape of the permutation

e w; is an East step of height j and is labeled { with 1 < < j if and only if o= (3) < ¢
and o (i) > i.

o w,; is an BEast step of height j and is labeled [ with 7+ 1 < [ < 27 if and only if
o~1(i) > i and o(i) < 1.

e w; is a North-East step if and only if o (i) > ¢ and o~ !(3) > 1.
e w; is a South-East step if and only if o(i) < 7 and o~1(3) < .

The recurrence (1) and the previous correspondence automatically give us that the height
each step w; is equal to Lp, (0,i%) for 1 < i < n— 1; as the load of the arc it in P, is equal
to the number of integers j < ¢ such that o(j) > j and ¢7'(j) > j, minus the number of
integers j < ¢ such that o(j) < j and o= (j) < j.

Given a labeled Motzkin walk, it is easy to draw the shape of the permutation o (be-
ginning and end of the path ¢ ~» (i), 1 < i < n), using the previous correspondence. The
beginning of the path 7 ~» (i) uses arc ¢* in P, if and only if w; is a North East step or an
East step at height j with a label between j+ 1 and 2j. The beginning of the path i ~» o (%)
uses arc (i — 1) in P, if and only if w; is a South East step or an East step at height j
with a label between 1 and j. The end of the path o=1(i) ~ 7 uses arc ¢~ in P, if and only
if w; is a North East step or an East step at height j with a label between 1 and j. The
end of the path o='(¢) ~ ¢ uses arc (i — 1)T in P, if and only if w; is a South East step
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Figure 6: From a labeled Motzkin walk to a permutation

or an East step at height ;7 with a label between j 4+ 1 and 2j. An example is illustrated
on Figure 5. Now we label the shape of the permutation to keep all the information of the
labeled Motzkin path. For i from 2 to n, if w; is a South-East step with label (z,y) then
we label the end of the path 0=!(i) ~ ¢ by = and the beginning of the path i ~ o(i) by
y. For ¢ from 2 to n, if w; is an East step of height j labeled by [; if j 4+ 1 < I < 25 then
we label the beginning of the path i ~ o(i) by { — j; if 1 <1 < j then we label the end
of the path o71(i) ~ 7 by . See Figure 6 for an example of labeling. Finally we associate
free beginnings and ends of paths going from left to right. For any free end of a path (resp.
beginning of the path) labeled z, we associate to it the 2" free unlabeled beginning of a
path (resp. unlabeled end of a path) starting from the left. See Figure 6 to see an example
of the construction of the permutation. [

5.2 Proof of Theorem 3

In [20], Louchard analyzes some list structures; in particular his “dictionary structure”
corresponds to our labeled Motzkin walks. We will use his notation in order to refer directly
to his article. From Louchard’s theorem 6.2, we deduce the following lemma:

Lemma 6 The height Y*([nv]) of a random labeled Motzkin walk of length n after the step
[nv] (v € [0,1])) has the following behavior

Y*([nv]) — nv(l —v)
N

= X (v),
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where “=7 denotes the weak convergence and X is a Markovian process with mean 0 and
covariance C(s,t) = 25*(1 —1)%, s < t. X(-) can also be written as X (v) = v2(1 —
v)?B (ﬁ , for some Brownian motion B(-).

Then the work of Daniels and Skyrme [6] gives us a way to compute the maximum of
Y*([nv]), that is the height of a random labeled Motzkin walk. Let X (v) be a gaussian

process with covariance and superposed on a curve y(v). Assume that g(v) is given by
vny(v), n > 1 and it has a unique maximum at . Their result is the following :

Theorem 4 [6] The random variable m = max,(X (v) + y(t)) is asymptotically gaussian
with mean and variance

E(m) ~ An /6 A3 g=1/3 o(m) ~ ¢

where

c=C(v,0), B=-y"(v), A=0.99615..., A= %—S(@,@) - é)—C(@,@).

From the Louchard’s result we know that

Y*([ne) = v/n (Vaw(L - v) + X (v) + O(1).

Therefore we have y(v) = v(1l — v) and the unique maximum is attained at v = 1/2. The
covariance of our gaussian process is C'(s,t) = 2s*(1 — ¢)%. We just then have to apply the
theorem [?] and get :

c=1/8, B=2, A=1/2.
We can write now our result :

Proposition 5 The height of a random labeled Motzkin walk Y™ is
max Y*([nv]) = % + my/n + O(n!/%), (2)

where m is asymptotically Gaussian with mean E(m) ~ An~='/®/2 and variance o*(m) ~ 1/8
and A = 0.99615 . ...

In the formula (2) of the above Proposition 5, the only non-deterministic part is m which
is Gaussian. So we just have to replace m by E(m) the mean of the coloration number and
hence to prove Theorem 3. We can also get directly the variance :

Theorem 5 The variance of the coloration number of the permutations in S, to be routed
on a linear network on n vertices is 3.

Proof. The variance of max, Y*([nv]) is just no?(m). O
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5.3 An algorithm to compute exactly the average coloration number

From previous Biane’s bijection and Proposition 4, we can get directly the generating func-
tion of the permutations in §,, of coloration number at most k& to be routed on a linear

HSk(Z) = Z Z z"

network on n vertices,

n>00€S, <k
that is
1
1 i
— Z_
422
1—-3z-—
1—5z— 2.2

1-2k-1)z— —
( Sl v Gy

Note that for any fixed k£ this generating function is rational. We can also use known re-
sults in enumerative combinatorics [9, 27] to get the generating function of the permutations

of coloration number exactly k,
o=y Y -

n>00ES, i
that is
(k‘!)222k
P ()P (z)

with FPo(z) =1, Pi(2) = 2 —bp and P,y1(2) = (t — b,) Po(2) — Ay Pu—1(2) for n > 1, where
P~ is the reciprocal polynomial of P, that is P} (z) = 2" P,(1/z) for n > 0.

This generating function leads to a recursive algorithm to compute the number of per-
mutations with coloration number %, denoted by A, k.

Proposition 6 The number of permutations in S, to be routed on a linear network on n
vertices with coloration number k, follows the following recurrence

0 if n <2k
hog =4 (k)7 it n=2k
- E?E—l p(1)hn—;p otherwise
where p(i) is the coefficient of 2% in Py (2)Pr(z).
From this result we are able to compute thanks to Maple the average coloration num-

ber of permutations in &, to be routed on a linear network on n vertices as it is h(n) =
Y k>0 khn g /nl. The first forty values are presented in Table 1.
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0 9 2.60 || 17 | 4.82 || 25| 7.00 || 33 | 9.13
0.5 10 | 2.88 || 18 | 5.10 || 26 | 7.27 || 34 | 9.4

0.83 || 11| 3.16 || 19 | 5.37 || 27 | 7.53 || 35 | 9.66
1.12 || 12 | 3.44 || 20 | 5.65 || 28 | 7.80 || 36 | 9.93
1.42 || 13 | 3.72 || 21 | 5.92 || 29 | 8.07 || 37 | 10.19
1.73 || 14 | 4.00 || 22 | 6.19 || 30 | 8.33 || 38 | 10.46
2.02 || 15| 4.27 || 23 | 6.46 || 31 | 8.60 || 39 | 10.72
231 || 16 | 4.55 || 24 | 6.73 || 32 | 8.86 || 40 | 10.98

w|~1lo|o| bk |w| e =S

Table 1: Average coloration number of permutations in S,.

6 Average coloration number on arbitrary tree networks

In this section, we extend the average complexity results on linear networks obtained in
Section 4, to the case of arbitrary tree networks. Given a tree T on n vertices, by Theorem
2, we know that it is NP-hard to compute R (o) for a permutation ¢ even if 7' is a binary
tree and o is an involution or a circular permutation. By Proposition 1, we know that
computing Rr (o) is 5/3—approximable. The aim of this section is then to find the average
coloration number required for this approximation algorithm.

By Lemma 2, we know that Ly < Ry < %ET + 1. Therefore, we will compute the
average load Lt for any tree T" and will obtain bounds on Rr, the average number of colors
needed to color any permutation-path set on T'. In Section 5.1 we present an upper bound
for the average coloration number on tree networks. In Section 5.2 we obtain exact results
on the average number of colors needed to color any permutation-path set on generalized
star tree networks.

6.1 Upper bound

Let’s remark that for any tree T on n vertices and for each vertex 7 of T, there exists
a relabeling of the vertex-set of T such that, for any permutation o € S,, Ly(o,it) =
Lp,(o,|T(¢)]). Such a relabeling is trivial. The vertices of T'(¢) are relabeled with integers in
{1,2,...,|T(7)|}, and the vertices in T\T'(¢) are relabeled with integers in {|T(¢)|+1,...,n}.
Therefore, the Lemma 77 can be rewritten as follows.

Lemma 7 Let T be a tree on n vertices and let ¢* be a random permutation in S,,. The
load of any arc it of T induced by o*, denoted by L%(c*,1%), has the following behavior

L0, %) = nor(i)(1 - vr(i)) + X (vr(i))va + O(1),
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where X is a Markovian process with mean 0 and covariance C(s,t) = s*(1—1t)?, s < t, and
where vy (1) = |T'(7)|/n.

As defined before, for any vertex @ of T, or(i) = min(vr(i),1 — vr(¢)) and vp =
max; 07(¢). Thus, by Theorem 4 and Theorem 3, we obtain the following theorem if T’
is a bounded degree tree.

Theorem 6 The average load induced by all permutations ¢ € S, on T is
ET = m?T(l — ﬁT) + O(R)

Proof. By Lemma 4, we have that Ly > nor(l — or). By Lemma 7, we know that
for all €, there exists no(€) such that, for all n > ng and any tree 7" on n vertices,
Ly <nor(1-or)+ nl/2te which proves the theorem. O

From Lemma 2 and Theorem 6, we obtain the following upper bound on the average
number of colors needed to color any permutation o € §,, on any bounded degree tree 1" on
n vertices.

Theorem 7 For all €, there exists ng(€) such that, for all n > ng and any bounded degree
tree T on n wvertices, the average number of colors Ry needed to color any permutation
o €S8, onT verifies, Rt < (% + e) nor(l — or).

6.2 The average number of colors in generalized star trees

Let k be a fixed integer, A be a partition of n — 1 in k parts and GST(X) be the associ-
ated generalized star tree on n vertices. Tn this case, we have @GST(/\) = min(|n/2], ).
Moreover, in [14] has been shown that for any collection of paths P on a generalized star
GST (M), RGST(A)(P) = LGST(/\)(P)' Therefore, we obtain the following results.

Theorem 8 The average number of colors needed to color any permutation o € S,, on a
generalized star tree GST(X) having n vertices is:

RGST(A) = nm(l —m) + o(n),
where m = min(|n/2], Ay)/n.
In particular we can obtain the following result.

Theorem 9 The average number of colors needed to color any permutation o € Spri1
on a generalized star tree GST(N) having nk + 1 vertices and k branches of length n is

n(n(k—1)4+1)/nk + 14 o(n).
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7 Average coloration number for involutions

Given a tree T on 2n vertices, by Theorem 2, we know that it is NP-hard to compute
Rr(0o) for an arbitrary involution o in I3, even if T is a binary tree. By Proposition 2,
we know that computing Rr(o) is 3/2—approximable. The aim of this section is then to
find the average coloration number required for this approximation algorithm and therefore
complete the work initiated in [?]. We will compute the average load Lt for any tree 7' and
will obtain bounds on Ry, the average number of colors needed to color any involution-path
set on T

We can compute easily the average load of any arc it of T, 1 < i< 2n—1 : ET(Z) =
|7'(3)|(2n — |T'(i)|)/2n. Therefore, we obtain a lower bound for the average load Lt and
the following lower bound on the average number of colors needed to color any involution
o € I, on any tree 1" on 2n vertices.

Lemma 8 Ry > 2n07(1 — o7).

By using a classical bijection between the involutions in I, and the set V5, of special walks
in N x N called labeled Dyck walks of length 2n [?, ?] which preserves the load as the Biane’s
bijection, and from Louchard’s theorem 5.3 [20], we get the following results that can be
obtained applying the same methods as in the previous sections for arbitrary permutations.

Lemma 9 [20] Let Py, be the path graph on 2n vertices and let o* be a random involution
in lyn. The load Ly, (0, [nv]) of arc [nv| (v €[0,2]) of Pay has the following behavior

Ly, (0%, [nv]) = nv(2 — 0)/2+ X (0)vi + O(1),
where X is a Markovian process with mean 0 and covariance C(s,t) = s*(2 — t)2/4, s < t.

Lemma 10 Let T be a tree on 2n vertices and let o* be a random involution in I,. The
load of any arc it of T induced by o*, denoted by Li.(c*,1%), has the following behavior

Ly(0™,i") = nor(i)(2 — vr(i))/2+ X (vr(i))vn + O(1),

where X is a Markovian process with mean 0 and covariance C'(s,t) = s*(2 — t)2/4, s < t,

and where vr(i) = |T(3)|/2n.

Theorem 10 Let T be a tree on 2n vertices. The average load induced by all involutions
o€ Iy, onT is Ly = 2nop(1 — 07) 4 o(n).

Theorem 11 For all €, there exists ng(€) such that, for all n > ng and any tree T on 2n
vertices, the average number of colors Rt verifies, Rt < (% + e) 2no7 (1 — o7).
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We just have to apply Theorem 10 to get the average coloration number for involutions
on linear networks and generalized star tree networks obtaining exactly the same asymptotic
behavior as for arbitrary permutations.

Corollary 1 The average coloration number for involutions on Py, induced by all involu-
tions o € Iy, on T is Rp,, = n/2+ o(n).

Note that the average complexity for involutions is the same as for permutations. Let k
be a fixed integer greater than 2 and A = (Aq,..., Ay a partition of n — 1 with & parts.

Corollary 2 The average coloration number for involutions on GST(N) induced by all in-
volutions o € Iy, on T is Ry = 2n0,\(1 — 0)) + o(n), with 0, = min(n/2, \y).
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